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Abstract. Let Γ be a numerical semigroup. The Leamer monoid Ss
Γ, for s ∈

N\Γ, is the monoid consisting of arithmetic sequences of step size s contained

in Γ. In this note, we give a formula for the ω-primality of elements in Ss
Γ when

Γ is an numerical semigroup generated by a arithmetic sequence of positive

integers.

1. Preliminaries

A numerical monoid S is an additive submonoid of the nonnegative integers N0

under regular addition such that |N0 − S| <∞ ([11] is a good general reference on
this subject). A great deal of literature has appeared over the past 15 years which
studies the nonunique factorization properties of these monoids (for instance, see
[4], [6], and [5] and the references therein). Among the factorization constants
studied on these objects is the ω-primality function (referred to hereafter as the
ω-function), which in some sense measures how far an element x ∈ S is from being
a prime element. A general survey of these results can be found in [16], while the
papers [2], [3], and [9] all consider issues related to algorithms for computing specific
values of the ω-function. Other papers that touch on this subject in more specific
terms are [7], [8], [14], and [17]. In this paper, we pick up on the study begun in
[12] of the factorization properties of Leamer monoids, which are constructed using
numerical monoids. Leamer monoids first appeared in [10] and were used in that
paper to study the Huneke-Wiegand conjecture from commutative algebra. In our
current work, we address a particular case of Problem 5.4 in [12] and completely
determine the behavior of the ω-function on a Leamer monoid generated by an
arithmetic numerical monoid (i.e, a numerical monoid generated by an arithmetic
sequence of integers). Our final results are summarized in Theorems 2.3 and 2.6.
We find these results of interest for several reasons reasons:

• ω-function calculations can be extremely complex, and an intrictate algo-
rithm for their computation has recently appeared in [9];
• the complete behavior of the ω-function on general commutative cancella-

tive monoids is known in only a few cases (one of which is the numerical
monoid 〈a, b〉 which is proved in [2] and summarized in [16]);
• the complete behavior of the ω-function on the underlying arithmetical

numerical monoid (of the Leamer monoid we are considering) is itself un-
known.

Before proceeding to our main result, we offer a series of definitions. We begin
with a general definition of the ω-function itself.
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Definition 1.1. Let S be a commutative cancellative monoid. For any nonunit
x ∈ S, define ω(x) = m if m is the smallest positive integer such that whenever x
divides x1 · · ·xt, with xi ∈ S, then there is a set T ⊂ {1, 2, . . . , t} of indices with
|T | ≤ m such that x divides

∑
i∈T xi. If no such m exists, then set ω(x) =∞.

When S is clear from the context, we simply write ω(n). A collection of basic
facts concerning the ω-function can be found in [1, Section 2]. Needless to say, an
element x ∈ S is prime if and only if ω(x) = 1. The definition of a Leamer monoid
follows.

Definition 1.2. Let Γ be a numerical monoid and s ∈ N \ Γ. Set

Ss
Γ = {(0, 0)} ∪ {(x, n) : {x, x+ s, x+ 2x, . . . , x+ ns} ⊂ Γ} ⊂ N2.

Thus Ss
Γ is the collection of arithmetic sequences of step size s contained in Γ.

Under regular addition on N2, Ss
Γ is a monoid known as a Leamer monoid.

As we will be working within N2 under addition, we remind the reader of the notion
of divisibility in N2. If x and y ∈ N2, then we say that x divides y if there is a
z ∈ N2 such that x+ z = y.

We define the column at x ∈ Γ to be the set {(x, n) ∈ Ss
Γ : n ≥ 1}. We

say that the column at x is infinite (resp. finite) if the cardinality of the column
at x is infinite (resp. finite). For a finite column, the height of the column is
max{n : (x, n) ∈ Ss

Γ} and we define xf to be the first infinite column in Ss
Γ. The

largest positive integer not in Γ is know as the Frobenius number and we denote
this as F (Γ). Since Ss

Γ ⊆ N2, we can graphically represent Ss
Γ, and we do so below

in the case where Γ = 〈12, 13, 20〉 with s = 1. The red dots in the graph represent
irreducible elements of Ss

Γ.
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Figure 1. The Leamer monoid S1
Γ for Γ = 〈12, 13, 20〉

The following result from [12, Lemma 2.8] will give us some basic factorization
properties of an arbitrary Leamer monoid. Note that A(Ss

Γ) is the set of irreducible
elements (or atoms) of Ss

Γ.

Lemma 1.3. (a) For n� 0, (xf , n) ∈ A(Ss
Γ).

(b) The column at every x > F (Γ) is infinite.
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Suppose that ω(n) is finite. To find this value, it is often helpful to consider the
bullets for n. A product of irreducibles x1 · · ·xk is said to be a bullet for n if n
divides the product x1x2 · · ·xk but does not divide any proper subproduct. If bul(x)
represents the set of bullets of x, then the following proposition [16, Proposition
2.10] will be key in our coming calculations.

Proposition 1.4. If M is a commutative cancellative monoid and x a nonunit of
M , then

ω(x) = sup{r |x1 · · ·xr ∈ bul(x) where each xi is irreducible in M}.
There has been fairly extensive study of the ω-function on numerical monoids in

recent years. Of particular interest is the following result [15, Theorem 3.6], which
describes the eventual behavior of the ω-function. If S = 〈n1, ..., nk〉 is a numerical
monoid, then for n sufficiently large, ω(n) is quasilinear with period dividing n1. In
particular, there exists an explicit N0 such that ω(n+ n1) = ω(n) + 1 for n > N0.
Hence, for sufficiently large n, ω(n) = n

n1
+ a0(n), where a0(n) has period dividing

n1.
For the remainder of our work, we focus on numerical monoids generated by

arithmetic sequences (a good general reference on this topic is [13]). So let S =
〈a, a+ d, ..., a+ kd〉, where gcd(a, d)=1 and 1 ≤ k < a.

Lemma 1.5. [6, Lemmas 7 & 8]

(1) Let n be a nonnegative integer. Then n ∈ S if and only if n = qa+ jd with
q ∈ N and 0 ≤ j ≤ kq.

(2) If n = qa + jd with q ∈ N and 0 ≤ j ≤ kq, then there is a factorization of
n in S of length q.

(3) Let n be an integer with n = ua + vd = u′a + v′d. Then there exists an
integer λ such that (u, v)− (u′, v′) = λ(d,−a).

(4) If n = qa + jd with q ∈ N and 0 ≤ j < a, then q is the longest length of
factorization of n in S.

We say that a Leamer monoid is arithmetic if Γ is an arithmetic numerical
semigroup with k ≥ 2 and s is the difference of the arithmetic sequence. If
Γ = 〈a, a + d, · · · , a + kd〉, then we will write Ss

Γ = Sd
a,k. We offer graphical

representations of arithmetic Leamer monoids in Figures 2 and 3. Additionally, the
following result tells us more about factorization properties of arithmetic Leamer
monoids, which we will use to characterize the ω-function in such monoids.

Theorem 1.6. [12, Lemma 4.3 (a)] Fix an arithmetic Leamer monoid Sd
a,k, and

let x = ma + id, where m, i ∈ N and 0 ≤ i < a. Then Sd
a,k has a finite column at

x if and only if m ≤ ba−2
k c and 0 ≤ i ≤ km− 1. In this case, the column at x has

height km− i.
Finally, we offer a lower bound on the ω-function in a general Leamer monoid.

Note that we are only considering nonunit elements, i.e. (x, n) 6= (0, 0), so n ≥ 1
by the definition of a Leamer monoid.

Proposition 1.7. If (x, n) ∈ Ss
Γ, then (x, n) has a bullet of length n + 1. Hence,

ω((x, n)) ≥ n+ 1 and no element in a Leamer monoid is prime.

Proof. We wish to show that (n + 1)(x + F (Γ), 1) is a bullet for (x, n). Since
nx+ (n+ 1)F (Γ) ≥ F (Γ),

(n+ 1)(x+ F (Γ), 1)− (x, n) = (nx+ (n+ 1)F (Γ), 1) ∈ Ss
Γ
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Figure 2. The Leamer monoid S7
Γ for Γ = 〈13, 20, 27, 34, 41, 48, 55, 62〉

by Lemma 1.3(b). Additionally,

n(x+ F (Γ), 1)− (x, n) = ((n− 1)x+ nF (Γ), 0) /∈ Ss
Γ

since (n− 1)x+nF (Γ) > 0. Thus, (x, n) divides (n+ 1)(x+F (Γ), 1) but no proper
subsum of it, so it is a bullet. The last statement clearly follows. �
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Figure 3. The Leamer monoid S7
Γ for Γ = 〈18, 25, 32, 39, 46, 53, 60, 67〉

2. ω-values in arithmetic Leamer monoids

Throughout this section, let Sd
a,k be an arithmetic Leamer monoid with gcd(a, d) =

1 and 2 ≤ k ≤ d. In [12], the authors study the factorization properties of arithmetic
Leamer monoids. Now, we wish to extend use these results to find the ω-values of
all elements in an arithmetic Leamer monoid. We will do so in Theorem 2.1 where
we consider the case where (x, n) is not a multiple of (a, k), and then in Theorem
2.6 where consider the case where (x, n) is a multiple of (a, k).

2.1. (x, n) is not a multiple of (a, k). We focus here on the case where (x, n) ∈
Sd
a,k such that (x, n) 6= p(a, k) for any p ∈ N. By Lemma 1.5, we may choose

the largest positive integer m such that x = ma + id where i ∈ {0, · · · ,mk}.
Additionally, let

(1) w = max

(
n+ 1,m+ ba− 2

k
c+ 1 + ba+ i− 1

a
cd
)
.

Lemmas 2.2 and 2.3 will prove the following.
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Theorem 2.1. If (x, n) ∈ Sd
a,k such that (x, n) 6= p(a, k) for any p ∈ N, then

ω((x, n)) = w.

For notation purposes, we let x mod a represent the least residue of x modulo
a.

Lemma 2.2. Let (x, n) ∈ Sd
a,k such that (x, n) 6= p(a, k) for any p ∈ N and suppose

that c ≥ w. Then (x, n) divides the sum of any c non-zero elements of Sd
a,k.

Proof. Let y0 = m+
⌊
a−2
k

⌋
+ 1 +

⌊
a+i−1

a

⌋
d, and let

x0 = y0a− (ma+ id)

=

(
m+

⌊
a− 2

k

⌋
+ 1 +

⌊
a+ i− 1

a

⌋
d

)
a− (ma+ id)

=

(⌊
a− 2

k

⌋
+ 1

)
a+

(⌊
a+ i− 1

a

⌋
a− i

)
d.

=

(⌊
a− 2

k

⌋
+ 1

)
a+ (a+ i− 1− ((a+ i− 1) mod a)− i)d

=

(⌊
a− 2

k

⌋
+ 1

)
a+ (a− 1− ((i− 1) mod a))d.

Since 0 ≤ a−1−((i−1) mod a) < a, there is an infinite column at x0 by Theorem
1.6, so this also implies that there is an infinite column at x0 + sa + td for any
s, t ∈ N.

Now, for 1 ≤ j ≤ c, let (xj , nj) be a non-zero element of Sd
a,k. Since xj ∈

〈a, · · · , a+ kd〉, there exists qj , ij ∈ N such that xj = qja+ ijd. Therefore,
c∑

j=1

qj =

y0 + b for some b ∈ N since c ≥ y0 and each qj is at least 1. As a result, we see

that
c∑

j=1

xj − x =
c∑

j=1

(qja + ijd) − (ma + id) = (y0 + b)a − (ma + id) +
c∑

j=1

ijd =

x0 + ba +
c∑

j=1

ijd by the definition of x0. So by our above discussion, there is an

infinite column of Sd
a,k at

c∑
j=1

xj−x. Since c ≥ n+1 and each nj ≥ 1,
c∑

j=1

nj−n ≥ 1.

Therefore, this shows that
c∑

j=1

(xj , nj)−(x, n) =

(
c∑

j=1

xj − x,
c∑

j=1

nj − n

)
is in Sd

a,k,

which completes the proof. �

If w = n+ 1, then by Proposition 1.7 there is a bullet for x of length n+ 1, and
hence ω((x, n)) = n+ 1. We consider the remaining case in the next lemma.

Lemma 2.3. Let (x, n) ∈ Sd
a,k such that (x, n) 6= p(a, k) for any p ∈ N. If

w = m+ ba−2
k c+ 1 + ba+i−1

a cd, then w(a, k) is a bullet for (x, n).

Proof. Define x0 and y0 as they are defined in the proof of Lemma 2.2. Since
w = y0, (x, n) divides y0(a, k) by Lemma 2.2. Now, we wish to show that (x, n)
does not divide (y0 − 1)(a, k).

First, note that

(y0 − 1)a− x = x0 − a =

⌊
a− 2

k

⌋
a+ (a− 1− ((i− 1) mod a)) d,
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so by Theorem 1.6, there is a finite column at (y0 − 1)a− x of height

ba− 2

k
ck − (a− 1− ((i− 1) mod a))

= ba− 2

k
ck − (a− 2)− 1 + ((i− 1) mod a)

= (−(a− 2) mod k) + ((i− 1) mod a)− 1.

Now, we wish to show that (y0 − 1)k − n is greater than this height. To do so, we

will first show that mk +
⌊
a+i−1

a

⌋
dk > n.

First, suppose that there is an infinite column at x = ma+id. Then by Theorem
1.6, m >

⌊
a−2
k

⌋
. Also, since w = y0, y0 − 1 ≥ n. Therefore, since k ≥ 2 by

assumption,

mk +

⌊
a+ i− 1

a

⌋
dk ≥ 2m+

⌊
a+ i− 1

a

⌋
dk

> m+

⌊
a− 2

k

⌋
+

⌊
a+ i− 1

a

⌋
d = y0 − 1 ≥ n.

Now, suppose that there is a finite column at x = ma + id. Then the height of
this column is mk − i by Theorem 1.6, so n ≤ mk − i ≤ mk +

⌊
a+i−1

a

⌋
dk. Note

that if equality holds, then the second inequality implies that i = 0, so the first
inequality then implies that n = mk. However, this would mean that (x, n) =
(ma,mk) = m(a, k), contradicting the fact that (x, n) is not a multiple of (a, k).
Therefore, we obtain the desired result.

We have now shown that mk +
⌊
a+i−1

a

⌋
dk > n, so since (a − 2) ≥ (i − 1)

mod a− 1, mk + (a− 2) +
⌊
a+i−1

a

⌋
dk > (i− 1) mod a+ n− 1. Rearranging this

inequality, we see that

(y0 − 1)k − n = mk +

⌊
a− 2

k

⌋
k +

⌊
a+ i− 1

a

⌋
dk − n

> (i− 1) mod a− (a− 2) mod k − 1,

which is the desired result. Therefore, since (y0−1)k−n is greater than the height
of the column at (y0 − 1)a− x, (y0 − 1)(a, k)− (x, n) is not in Sd

a,k. �

2.2. (x, n) is a multiple of (a, k). Throughout this subsection, let (x, n) = m(a, k)
for some m ∈ N∗. We wish to show in the following lemmas that ω((x, n)) = n+ 1.

Lemma 2.4. Let (x, n) ∈ Sd
a,k such that (x, n) = m(a, k) for some m ∈ N. If

c ≥ mk + 1, then (x, n) divides the sum of any c non-zero elements of Sd
a,k.

Proof. For 1 ≤ j ≤ c, let (xj , nj) ∈ Sd
a,k be a non-zero element. By Lemma 1.5,

this means that there exists qj , ij ∈ N such that xj = qja + ijd and 0 ≤ ij ≤ qjk.
We now divide the claim into two cases.

First, suppose that some ql >
⌊
a−2
k

⌋
. Then

c∑
j=1

qj −m =

c∑
j=1,j 6=l

qj + ql −m ≥ mk −m+ ql ≥ ql ≥
⌊
a− 2

k

⌋
+ 1.
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Therefore,
c∑

j=1

xj − x =

c∑
j=1

(qja+ ijd)−ma

=

 c∑
j=1

qj −m

 a+

c∑
j=1

ijd

=

(⌊
a− 2

k

⌋
+ 1 + s

)
a+ td

for some s, t ∈ N. By Theorem 1.6, there is an infinite column at
(⌊

a−2
k

⌋
+ 1
)
a, so

it follows that there is an infinite column at
(⌊

a−2
k

⌋
+ 1
)
a+sa+ td for any s, t ∈ N.

Since there is an infinite column at
c∑

j=1

xj − x and since
c∑

j=1

nj − n ≥ c−mk ≥ 1,

(x, n) divides
c∑

j=1

(xj , nj).

Now, suppose that qj ≤
⌊
a−2
k

⌋
for all 1 ≤ j ≤ c. By Theorem 1.6, 1 ≤ nj ≤

qjk − ij , so ij ≤ qjk − nj ≤ qjk − 1. Therefore,

0 ≤
c∑

j=1

ij ≤
c∑

j=1

qjk − c ≤
c∑

j=1

qjk − (mk + 1) =

 c∑
j=1

qj −m

 k − 1,

so
c∑

j=1

xj − x =

(
c∑

j=1

qj −m

)
a+

c∑
j=1

ijd is in 〈a, a+ d, · · · , a+ kd〉 by Lemma 1.5.

Additionally, by the same lemma, there exists unique q′, i′ ∈ N such that
c∑

j=1

xj−x =

q′a + i′d and 0 ≤ i′ < a. Let λ ∈ Z such that (q′, i′) −

(
c∑

j=1

qj −m,
c∑

j=1

ij

)
=

λ(d,−a). Since i′ < a and each ij ≥ 0, λ ≥ 0. Therefore, by Theorem 1.6, the

height of column at
c∑

j=1

xj − x is

q′k − i′ =

 c∑
j=1

qj −m+ λd

 k −

 c∑
j=1

ij − λa


≥

 c∑
j=1

qj −m

 k −
c∑

j=1

ij

≥
c∑

j=1

nj −mk,

where the last inequality follows from the fact that nj ≤ qjk − ij . Therefore, since

c ≥ mk + 1, 1 ≤
c∑

j=1

nj − n ≤ q′k − i′, so
c∑

j=1

(xj , nj)− (x, n) is in Sd
a,k. �

Now, we wish to find an element of length n+ 1 = mk + 1 such that no proper
subsum of it is divisible by (x, n).
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Lemma 2.5. Let (x, n) ∈ Sd
a,k such that (x, n) = m(a, k) for some m ∈ N. Then

(n+ 1)(a+ x, 1) is divisible by (x, n), but no proper subsum is divisible by (x, n).

Proof. By Lemma 2.4, (x, n) divides (n + 1)(a + x, 1). Therefore, we only need
to show that it does not divide any proper subsum. Since n(a + x, 1) − (x, n) =
(na+ (n− 1)x, 0), and na+ (n− 1)x > 0, the result follows. �

By the definition of the ω-function, the above lemmas imply the next result.

Theorem 2.6. If (x, n) ∈ Sd
a,k such that (x, n) = m(a, k) for some m ∈ N, then

ω((x, n)) = n+ 1.

We close with a brief example.

Example 2.7. Setting Γ = 〈13, 20, 27, 34, 41, 48, 55, 62〉, we return to the Leamer
monoid of Figure 2. In the language of Theorems 2.1 and 2.6, we have that a = 13,
d = 7, and k = 7. If (x, n) ∈ S7

13,7, then from (1), we have that

w = max

(
n+ 1,m+ 2 +

⌊
12 + i

13

⌋
7

)
.

Hence

ω(x) =

{
max

(
n+ 1,m+ 2 +

⌊
12+i
13

⌋
7
)

if (x, n) 6= p(13, 7) for any p ∈ N
n+ 1 if (x, n) = p(13, 7) for some p ∈ N.

Notice if x is relatively large with respect to n (i.e., m > n), then the last array
reduces to

ω(x) =

{
m+ 2 +

⌊
12+i
13

⌋
7 if (x, n) 6= p(13, 7) for any p ∈ N

n+ 1 if (x, n) = p(13, 7) for some p ∈ N.
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[10] P.A. Garćıa-Sánchez and M.J. Leamer. Huneke-Wiegand Conjecture for complete intersection

numerical semigroup, J. Algebra 391(2013), 114-124

[11] P. A. Garćıa-Sánchez and J. C. Rosales, Numerical Semigroups, vol. 20, Developments in
Mathematics, Springer-Verlag, 2009.

[12] C. Haarmann, A. Kalauli, A. Moran, C. O’Neill, R. Pelayo. Factorization properties of Leamer

monoids. Semigroup Forum 89(2014), 409–421.
[13] G. L. Matthews, On numerical semigroups generated by generalized arithmetic sequences,

Comm. Algebra 32(2004), 3459–3469.

[14] C. O’Neill, On factorization invariants and Hilbert functions, J. Pure Appl. Algebra 221
(2017), 3069–3088.

[15] C. O’Neill, R. Pelayo. On the Linearity of Omega-Primality in Numerical Monoids, J. Pure

Appl. Algebra 218 (2014), 1620–1627.
[16] C. O’Neill and R. Pelayo. How do you measure primality?, Amer. Math. Monthly 122 (2015),

121–137.
[17] C. O’Neill and R. Pelayo, Factorization invariants in numerical monoids, Algebraic and Geo-

metric Methods in Discrete Mathematics 685 (2017), 231.

Department of Mathematics and Statistics, Sam Houston State University, Huntsville,

TX 77341
Email address: scott.chapman@shsu.edu

URL: www.shsu.edu/∼stc008/

Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville,

TN 37240

Email address: zachary.d.tripp@vanderbilt.edu


	1. Preliminaries
	2. -values in arithmetic Leamer monoids
	2.1. (x,n) is not a multiple of (a,k)
	2.2. (x,n) is a multiple of (a,k)

	Acknowledgement
	References

