w-PRIMALITY IN ARITHMETIC LEAMER MONOIDS

SCOTT T. CHAPMAN AND ZACK TRIPP

ABSTRACT. Let I' be a numerical semigroup. The Leamer monoid Sf, for s €
N\T, is the monoid consisting of arithmetic sequences of step size s contained
inI". In this note, we give a formula for the w-primality of elements in S} when
I" is an numerical semigroup generated by a arithmetic sequence of positive
integers.

1. PRELIMINARIES

A numerical monoid S is an additive submonoid of the nonnegative integers Ny
under regular addition such that |Ng — S| < oo ([11] is a good general reference on
this subject). A great deal of literature has appeared over the past 15 years which
studies the nonunique factorization properties of these monoids (for instance, see
[, [6], and [5] and the references therein). Among the factorization constants
studied on these objects is the w-primality function (referred to hereafter as the
w-function), which in some sense measures how far an element x € S is from being
a prime element. A general survey of these results can be found in [I6], while the
papers [2], [3], and [9] all consider issues related to algorithms for computing specific
values of the w-function. Other papers that touch on this subject in more specific
terms are [7], [8], [I4], and [I7]. In this paper, we pick up on the study begun in
[12] of the factorization properties of Leamer monoids, which are constructed using
numerical monoids. Leamer monoids first appeared in [10] and were used in that
paper to study the Huneke-Wiegand conjecture from commutative algebra. In our
current work, we address a particular case of Problem 5.4 in [I2] and completely
determine the behavior of the w-function on a Leamer monoid generated by an
arithmetic numerical monoid (i.e, a numerical monoid generated by an arithmetic
sequence of integers). Our final results are summarized in Theorems 2.3 and 2.6.
We find these results of interest for several reasons reasons:

e w-function calculations can be extremely complex, and an intrictate algo-
rithm for their computation has recently appeared in [9];

e the complete behavior of the w-function on general commutative cancella-
tive monoids is known in only a few cases (one of which is the numerical
monoid (a,b) which is proved in [2] and summarized in [16]);

e the complete behavior of the w-function on the underlying arithmetical
numerical monoid (of the Leamer monoid we are considering) is itself un-
known.

Before proceeding to our main result, we offer a series of definitions. We begin
with a general definition of the w-function itself.
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Definition 1.1. Let S be a commutative cancellative monoid. For any nonunit
x € S, define w(z) = m if m is the smallest positive integer such that whenever x
divides x; - - - x4, with z; € S, then there is a set T C {1,2,...,t} of indices with
|T'| < m such that x divides ), ., x;. If no such m exists, then set w(x) = co.

When S is clear from the context, we simply write w(n). A collection of basic
facts concerning the w-function can be found in [I, Section 2]. Needless to say, an
element x € S is prime if and only if w(x) = 1. The definition of a Leamer monoid
follows.

Definition 1.2. Let I" be a numerical monoid and s € N\ T'. Set
Si:={(0,00yU{(z,n): {w,x +s,2+22,...,x+ns} CT} C N~

Thus Sp is the collection of arithmetic sequences of step size s contained in I'.
Under regular addition on N2, S% is a monoid known as a Leamer monoid.

As we will be working within N2 under addition, we remind the reader of the notion
of divisibility in N2, If z and y € N2, then we say that = divides y if there is a
z € N? such that x + z = y.

We define the column at z € T' to be the set {(z,n) € S& : n > 1}. We
say that the column at x is infinite (resp. finite) if the cardinality of the column
at x is infinite (resp. finite). For a finite column, the height of the column is
max{n : (z,n) € Si} and we define z; to be the first infinite column in S7. The
largest positive integer not in I' is know as the Frobenius number and we denote
this as F(T'). Since S C N?, we can graphically represent S5, and we do so below
in the case where I' = (12,13, 20) with s = 1. The red dots in the graph represent
irreducible elements of S{.
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FIGURE 1. The Leamer monoid St for I' = (12,13, 20)

The following result from [12] Lemma 2.8] will give us some basic factorization
properties of an arbitrary Leamer monoid. Note that A(S}) is the set of irreducible
elements (or atoms) of S}.

Lemma 1.3. (a) For n >0, (zf,n) € A(S}).
(b) The column at every x > F(I') is infinite.
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Suppose that w(n) is finite. To find this value, it is often helpful to consider the
bullets for n. A product of irreducibles 1 - - -z is said to be a bullet for n if n
divides the product x1z - - - 2 but does not divide any proper subproduct. If bul(z)
represents the set of bullets of z, then the following proposition [I6, Proposition
2.10] will be key in our coming calculations.

Proposition 1.4. If M is a commutative cancellative monoid and x a nonunit of
M, then

w(z) = sup{r|zy -z, € bul(z) where each z; is irreducible in M}.

There has been fairly extensive study of the w-function on numerical monoids in
recent years. Of particular interest is the following result [I5, Theorem 3.6], which
describes the eventual behavior of the w-function. If S = (nq,...,ng) is a numerical
monoid, then for n sufficiently large, w(n) is quasilinear with period dividing n7. In
particular, there exists an explicit Ny such that w(n 4+ n1) = w(n) + 1 for n > Np.
Hence, for sufficiently large n, w(n) = ;- + ao(n), where ag(n) has period dividing
ni.

For the remainder of our work, we focus on numerical monoids generated by
arithmetic sequences (a good general reference on this topic is [I3]). So let S =
(a,a+d,...,a+ kd), where ged(a,d)=1 and 1 < k < a.

Lemma 1.5. [0, Lemmas 7 & §]

(1) Let n be a nonnegative integer. Then n € S if and only if n = ga+ jd with
g€ Nand0<j<kq.

(2) If n = ga + jd with ¢ € N and 0 < j < kq, then there is a factorization of
n in S of length q.

(3) Let n be an integer with n = ua + vd = v’a + v'd. Then there exists an
integer A such that (u,v) — (v/,v") = A(d, —a).

(4) If n = ga + jd with ¢ € N and 0 < j < a, then ¢ is the longest length of
factorization of n in S.

We say that a Leamer monoid is arithmetic if T' is an arithmetic numerical
semigroup with k& > 2 and s is the difference of the arithmetic sequence. If
I' = (a,a+d, - ,a + kd), then we will write S§ = S(‘f,k. We offer graphical
representations of arithmetic Leamer monoids in Figures 2 and 3. Additionally, the
following result tells us more about factorization properties of arithmetic Leamer
monoids, which we will use to characterize the w-function in such monoids.
Theorem 1.6. [12, Lemma 4.3 (a)] Fix an arithmetic Leamer monoid S¢,, and
let © = ma + id, where m,7 € N and 0 < ¢ < a. Then Sik. has a finite column at
z if and only if m < [%2| and 0 < i < km — 1. In this case, the column at z has
height km — 3.

Finally, we offer a lower bound on the w-function in a general Leamer monoid.
Note that we are only considering nonunit elements, i.e. (x,n) # (0,0), son > 1
by the definition of a Leamer monoid.

Proposition 1.7. If (x,n) € S§, then (z,n) has a bullet of length n + 1. Hence,
w((z,n)) > n+ 1 and no element in a Leamer monoid is prime.

Proof. We wish to show that (n + 1)(xz + F(I"),1) is a bullet for (x,n). Since
nz+ (n+ 1)F() > F(T),

(n+ 1)@+ F(I),1) = (z,n) = (nz + (n+ 1)F(T),1) € Sp
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FIGURE 2. The Leamer monoid Sf. for I' = (13,20, 27, 34,41, 48, 55, 62)

by Lemma b). Additionally,
n(z + F(I'),1) = (z,n) = ((n - L)z + nF(I'),0) ¢ Sp

since (n — 1)z +nF(T') > 0. Thus, (z,n) divides (n+1)(z+ F(T'), 1) but no proper
subsum of it, so it is a bullet. The last statement clearly follows. ]
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FIGURE 3. The Leamer monoid S, for T' = (18, 25,32, 39, 46, 53, 60, 67)

2. w-VALUES IN ARITHMETIC LEAMER MONOIDS

Throughout this section, let Sg) i be an arithmetic Leamer monoid with ged(a, d) =
land 2 < k < d. In [I2], the authors study the factorization properties of arithmetic
Leamer monoids. Now, we wish to extend use these results to find the w-values of
all elements in an arithmetic Leamer monoid. We will do so in Theorem 2] where
we consider the case where (z,n) is not a multiple of (a, k), and then in Theorem
where consider the case where (z,n) is a multiple of (a, k).

2.1. (x,n) is not a multiple of (a,k). We focus here on the case where (x,n) €
Sg,k such that (z,n) # p(a,k) for any p € N. By Lemma we may choose
the largest positive integer m such that 2 = ma + id where ¢ € {0,---,mk}.
Additionally, let

(1) w:max<n+1,m+L(1;2j+l+LCH2_1Jd).

Lemmas and [2.3| will prove the following.
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Theorem 2.1. If (z,n) € Sik such that (z,n) # p(a, k) for any p € N, then
w((z,n)) =w.

For notation purposes, we let x mod a represent the least residue of x modulo
a.

Lemma 2.2. Let (z,

n) € Sg}k such that (z,n) # p(a, k) for any p € N and suppose
that ¢ > w. Then (z,n) divides the sum of any ¢ non-zero elements of Sik.

Proof. Let yo =m+ [ 22| + 1+ | 2t=L|d, and let

xo = Yoa — (ma + id)

- (m+ V;QJ + 1+ {TJd)a—(ma%—id)

o A0 (e BOK

:( a-2 +1>a+(a+i—1—((a+i—1) mod a) —i)d

( “*2_ +1)a+(a1((i1) mod a))d.

Since 0 <a—1—((i—1) mod a) < a, there is an infinite column at z¢ by Theorem
so this also implies that there is an infinite column at xy + sa + td for any
s,t € N.

Now, for 1 < j < ¢, let (xj,n;) be a non-zero element of Sg,k. Since x; €

C
(a,- -+ ,a+kd), there exists ¢;,%; € N such that z; = gja+1i;d. Therefore, Zl q; =
j=
Yo + b for some b € N since ¢ > yo and each ¢; is at least 1. As a result, we see
C

that i1 Tj— T = Zl(qja +i;d) — (ma + id) = (yo + b)a — (ma +id) + il ijd =

j= j= =

o + ba + ‘ZC:1 i;d by the definition of xy. So by our above discussion, there is an
j=

infinite column of Sg’k at 321 xj—x. Since ¢ > n+1 and each n; > 1, ji:l nj—n > 1.

Therefore, this shows that i (xj,n;)—(x,n) = (i zj—x, i n; — n) isin Sg)k,

which completes the proof.J=1 = = O

If w = n+ 1, then by Proposition there is a bullet for = of length n + 1, and
hence w((x,n)) = n + 1. We consider the remaining case in the next lemma.

Lemma 2.3. Let (z,n) € S%, such that (z,n) # p(a,k) for any p € N. If
w=m+ |22 +1+ L%;ljd,/ then w(a, k) is a bullet for (x,n).
Proof. Define ¢ and yo as they are defined in the proof of Lemma Since
w = yo, (x,n) divides yo(a, k) by Lemma Now, we wish to show that (x,n)
does not divide (yo — 1)(a, k).
First, note that
a—2
k

(yol)aosxoaL Ja+(a1((i1) mod a)) d,
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so by Theorem there is a finite column at (yo — 1)a — z of height

a—2
L k
a—

22k~ (a=2) ~ 14+ ((~1) moda)
=(—(a—2) modk)+ ((i—1) mod a)—1.

Jk—(a—1—-((i—1) mod a))

Now, we wish to show that (yo — 1)k — n is greater than this height. To do so, we

will first show that mk + | “=L |dk > n.

First, suppose that there is an infinite column at * = ma+1id. Then by Theorem
m > LG—EQJ Also, since w = yo, yo — 1 > n. Therefore, since k > 2 by
assumption,

p — 1 ; — 1
mk + VHJdkzzmjL V—HJdk

a a
-2 i —1
>m+{akJ+{a+sz=yO—l>n.
a

Now, suppose that there is a finite column at x = ma + id. Then the height of
this column is mk — i by Theorem son < mk—i<mk+ |[*“t=L|dk. Note
that if equality holds, then the second inequality implies that ¢ = 0, so the first
inequality then implies that n = mk. However, this would mean that (z,n) =
(ma, mk) = m(a, k), contradicting the fact that (x,n) is not a multiple of (a, k).
Therefore, we obtain the desired result.

We have now shown that mk + [2t=L|dk > n, so since (a —2) > (i — 1)
mod a — 1, mk + (a — 2) + | “2=L|dk > (i — 1) mod a +n — 1. Rearranging this
inequality, we see that

-2 , — 1
(Yo — 1)k —n = mk + {“k JIH— VH_;Jdk:—n

>(—1) moda—(a—2) modk—1,

which is the desired result. Therefore, since (yo — 1)k —n is greater than the height
of the column at (yo — 1)a — z, (yo — 1)(a, k) — (x,n) is not in Sik' O

2.2. (z,n) is a multiple of (a, k). Throughout this subsection, let (z,n) = m(a, k)
for some m € N*. We wish to show in the following lemmas that w((z,n)) =n+1.

Lemma 2.4. Let (z,n) € Sik such that (x,n) = m(a,k) for some m € N. If
¢ > mk + 1, then (z,n) divides the sum of any ¢ non-zero elements of S;i,k.

Proof. For 1 < j < ¢, let (z;,n;) € S¢, be a non-zero element. By Lemma
this means that there exists g;,7; € N such that x; = ¢ja +i;d and 0 < i; < gjk.
We now divide the claim into two cases.

First, suppose that some ¢q; > L%J Then

C C
a—?2
E q; —m = E qj+ql—m>mk—m+ql>ql>{k J—i—l.
Jj=1 Jj=1,5#l
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Therefore,

ij—x—qua—i—ijd)—ma
j=1

c c
Z g —m|a + Z ’LJd
j=1 j=1

(|52 +1+ )

for some s,t € N. By Theorem [1.6] there is an infinite column at (L - J + 1) a, so
it follows that there is an infinite Column at (L J + 1) a+sa+td for any s,t € N.

Since there is an infinite column at Z x; — « and since Z n;—n>c—mk>1,
Jj=1 Jj=1
C

(x,n) divides Y (z;,n,).

j=1
Now, suppose that ¢; < |2 for all 1 < j < c¢. By Theorem [1.6] 1 < n; <
qjk —ij, so i; < qjk —n; < gk — 1. Therefore,

0<ZZJ<Z% fc<2qj (mk+1) = qufm k-1,
j=1

C C
S0 Yy, xj—x= (Z q; — >a+ Y. ijdisin (a,a+d, - ,a+ kd) by Lemma
j=1 j=1

C
Additionally, by the same lemma, there exists unique ¢/, 7’ € Nsuch that > z;—x =
=1

C C
da+idand 0 < ¢ < a. Let A € Z such that (¢',i') — | D g —m, > 4; | =
i=1 i=

A(d, —a). Since i’ < a and each i; > 0, A > 0. Therefore, by Theorem the

C
height of column at ) x; —x is
j=1

q/kfi/

iquer/\d k— iijf)\a
j=1 j=1

v

C
,E i
Jj=1

C
> g n; —mk,
=1

where the last inequality follows from the fact that n; < g;k — ;. Therefore, since

(& C
c>mk+1,1< > nj—n<dgk—14,s0 Y (xj,n;)— (z,n) is in S(‘li’k. O
j=1 j=1

Now, we wish to find an element of length n + 1 = mk + 1 such that no proper
subsum of it is divisible by (x,n).
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Lemma 2.5. Let (z,n) € Sik such that (z,n) = m(a, k) for some m € N. Then
(n+1)(a+ z,1) is divisible by (z,n), but no proper subsum is divisible by (z,n).

Proof. By Lemma (z,n) divides (n + 1)(a + x,1). Therefore, we only need
to show that it does not divide any proper subsum. Since n(a + z,1) — (z,n) =
(na+ (n —1)z,0), and na + (n — 1)z > 0, the result follows.

By the definition of the w-function, the above lemmas imply the next result.

Theorem 2.6. If (z,n) € S(‘f,k such that (x,n) = m(a, k) for some m € N, then
w((z,n)) =n+1.

We close with a brief example.

Example 2.7. Setting I' = (13,20, 27, 34,41, 48, 55,62), we return to the Leamer
monoid of Figure 2. In the language of Theorems[2.1] and we have that a = 13,
d=7,and k =7. If (z,n) € S{3, then from (L)), we have that

12414
wmax<n+1,m+2+{ +ZJ 7>.

13
Hence
w(z) = max (n+1,m+2+ |BH]7) if  (x,n)# p(13,7) for any p € N
Sl n+1 if  (x,n)=p(13,7) for some p € N.

Notice if z is relatively large with respect to n (i.e., m > n), then the last array
reduces to

w(z) = m+24 [BE|7 if  (x,n) #p(13,7) for any p € N
Tl n+1 if  (z,n)=p(13,7) for some p € N.
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