$\omega\textsc{-}\mathsf{PRIMALITY}$ IN ARITHMETIC LEAMER MONOIDS

SCOTT T. CHAPMAN AND ZACK TRIPP

ABSTRACT. Let Γ be a numerical semigroup. The Leamer monoid S_{Γ}^{s} , for $s \in \mathbb{N} \backslash \Gamma$, is the monoid consisting of arithmetic sequences of step size s contained in Γ . In this note, we give a formula for the ω -primality of elements in S_{Γ}^{s} when Γ is an numerical semigroup generated by a arithmetic sequence of positive integers.

1. Preliminaries

A numerical monoid S is an additive submonoid of the nonnegative integers \mathbb{N}_0 under regular addition such that $|\mathbb{N}_0 - S| < \infty$ ([11] is a good general reference on this subject). A great deal of literature has appeared over the past 15 years which studies the nonunique factorization properties of these monoids (for instance, see [4], [6], and [5] and the references therein). Among the factorization constants studied on these objects is the ω -primality function (referred to hereafter as the ω -function), which in some sense measures how far an element $x \in S$ is from being a prime element. A general survey of these results can be found in [16], while the papers [2], [3], and [9] all consider issues related to algorithms for computing specific values of the ω -function. Other papers that touch on this subject in more specific terms are [7], [8], [14], and [17]. In this paper, we pick up on the study begun in [12] of the factorization properties of Learner monoids, which are constructed using numerical monoids. Learner monoids first appeared in [10] and were used in that paper to study the Huneke-Wiegand conjecture from commutative algebra. In our current work, we address a particular case of Problem 5.4 in [12] and completely determine the behavior of the ω -function on a Learner monoid generated by an arithmetic numerical monoid (i.e., a numerical monoid generated by an arithmetic sequence of integers). Our final results are summarized in Theorems 2.3 and 2.6. We find these results of interest for several reasons reasons:

- ω -function calculations can be extremely complex, and an intrictate algorithm for their computation has recently appeared in [9];
- the complete behavior of the ω-function on general commutative cancellative monoids is known in only a few cases (one of which is the numerical monoid (a, b) which is proved in [2] and summarized in [16]);
- the complete behavior of the ω -function on the underlying arithmetical numerical monoid (of the Learner monoid we are considering) is itself unknown.

Before proceeding to our main result, we offer a series of definitions. We begin with a general definition of the ω -function itself.

Both author gratefully acknowledge support from the National Science Foundation under grant DMS-1262897. The first author also acknowledges support under an Academic Leave funded by Sam Houston State University.

Definition 1.1. Let S be a commutative cancellative monoid. For any nonunit $x \in S$, define $\omega(x) = m$ if m is the smallest positive integer such that whenever x divides $x_1 \cdots x_t$, with $x_i \in S$, then there is a set $T \subset \{1, 2, \ldots, t\}$ of indices with $|T| \leq m$ such that x divides $\sum_{i \in T} x_i$. If no such m exists, then set $\omega(x) = \infty$.

When S is clear from the context, we simply write $\omega(n)$. A collection of basic facts concerning the ω -function can be found in [1, Section 2]. Needless to say, an element $x \in S$ is prime if and only if $\omega(x) = 1$. The definition of a Learer monoid follows.

Definition 1.2. Let Γ be a numerical monoid and $s \in \mathbb{N} \setminus \Gamma$. Set

$$S_{\Gamma}^{s} = \{(0,0)\} \cup \{(x,n) : \{x, x+s, x+2x, \dots, x+ns\} \subset \Gamma\} \subset \mathbb{N}^{2}.$$

Thus S_{Γ}^{s} is the collection of arithmetic sequences of step size s contained in Γ . Under regular addition on \mathbb{N}^{2} , S_{Γ}^{s} is a monoid known as a *Leamer monoid*.

As we will be working within \mathbb{N}^2 under addition, we remind the reader of the notion of divisibility in \mathbb{N}^2 . If x and $y \in \mathbb{N}^2$, then we say that x divides y if there is a $z \in \mathbb{N}^2$ such that x + z = y.

We define the column at $x \in \Gamma$ to be the set $\{(x,n) \in S_{\Gamma}^s : n \geq 1\}$. We say that the column at x is infinite (resp. finite) if the cardinality of the column at x is infinite (resp. finite). For a finite column, the height of the column is $\max\{n : (x,n) \in S_{\Gamma}^s\}$ and we define x_f to be the first infinite column in S_{Γ}^s . The largest positive integer not in Γ is know as the Frobenius number and we denote this as $F(\Gamma)$. Since $S_{\Gamma}^s \subseteq \mathbb{N}^2$, we can graphically represent S_{Γ}^s , and we do so below in the case where $\Gamma = \langle 12, 13, 20 \rangle$ with s = 1. The red dots in the graph represent irreducible elements of S_{Γ}^s .

FIGURE 1. The Learner monoid S_{Γ}^1 for $\Gamma = \langle 12, 13, 20 \rangle$

The following result from [12, Lemma 2.8] will give us some basic factorization properties of an arbitrary Learner monoid. Note that $\mathcal{A}(S_{\Gamma}^{s})$ is the set of irreducible elements (or atoms) of S_{Γ}^{s} .

Lemma 1.3. (a) For $n \gg 0$, $(x_f, n) \in \mathcal{A}(S^s_{\Gamma})$. (b) The column at every $x > F(\Gamma)$ is infinite. Suppose that $\omega(n)$ is finite. To find this value, it is often helpful to consider the *bullets* for *n*. A product of irreducibles $x_1 \cdots x_k$ is said to be a bullet for *n* if *n* divides the product $x_1 x_2 \cdots x_k$ but does not divide any proper subproduct. If bul(x) represents the set of bullets of *x*, then the following proposition [16, Proposition 2.10] will be key in our coming calculations.

Proposition 1.4. If M is a commutative cancellative monoid and x a nonunit of M, then

 $\omega(x) = \sup\{r \mid x_1 \cdots x_r \in bul(x) \text{ where each } x_i \text{ is irreducible in } M\}.$

There has been fairly extensive study of the ω -function on numerical monoids in recent years. Of particular interest is the following result [15, Theorem 3.6], which describes the eventual behavior of the ω -function. If $S = \langle n_1, ..., n_k \rangle$ is a numerical monoid, then for n sufficiently large, $\omega(n)$ is quasilinear with period dividing n_1 . In particular, there exists an explicit N_0 such that $\omega(n + n_1) = \omega(n) + 1$ for $n > N_0$. Hence, for sufficiently large n, $\omega(n) = \frac{n}{n_1} + a_0(n)$, where $a_0(n)$ has period dividing n_1 .

For the remainder of our work, we focus on numerical monoids generated by arithmetic sequences (a good general reference on this topic is [13]). So let $S = \langle a, a + d, ..., a + kd \rangle$, where gcd(a, d)=1 and $1 \leq k < a$.

Lemma 1.5. [6, Lemmas 7 & 8]

- (1) Let n be a nonnegative integer. Then $n \in S$ if and only if n = qa + jd with $q \in \mathbb{N}$ and $0 \le j \le kq$.
- (2) If n = qa + jd with $q \in \mathbb{N}$ and $0 \le j \le kq$, then there is a factorization of n in S of length q.
- (3) Let n be an integer with n = ua + vd = u'a + v'd. Then there exists an integer λ such that $(u, v) (u', v') = \lambda(d, -a)$.
- (4) If n = qa + jd with $q \in \mathbb{N}$ and $0 \le j < a$, then q is the longest length of factorization of n in S.

We say that a Leamer monoid is *arithmetic* if Γ is an arithmetic numerical semigroup with $k \geq 2$ and s is the difference of the arithmetic sequence. If $\Gamma = \langle a, a + d, \dots, a + kd \rangle$, then we will write $S_{\Gamma}^{s} = S_{a,k}^{d}$. We offer graphical representations of arithmetic Leamer monoids in Figures 2 and 3. Additionally, the following result tells us more about factorization properties of arithmetic Leamer monoids, which we will use to characterize the ω -function in such monoids.

Theorem 1.6. [12, Lemma 4.3 (a)] Fix an arithmetic Leamer monoid $S_{a,k}^d$, and let x = ma + id, where $m, i \in \mathbb{N}$ and $0 \le i < a$. Then $S_{a,k}^d$ has a finite column at x if and only if $m \le \lfloor \frac{a-2}{k} \rfloor$ and $0 \le i \le km - 1$. In this case, the column at x has height km - i.

Finally, we offer a lower bound on the ω -function in a general Learner monoid. Note that we are only considering nonunit elements, i.e. $(x, n) \neq (0, 0)$, so $n \geq 1$ by the definition of a Learner monoid.

Proposition 1.7. If $(x, n) \in S_{\Gamma}^s$, then (x, n) has a bullet of length n + 1. Hence, $\omega((x, n)) \ge n + 1$ and no element in a Leamer monoid is prime.

Proof. We wish to show that $(n + 1)(x + F(\Gamma), 1)$ is a bullet for (x, n). Since $nx + (n + 1)F(\Gamma) \ge F(\Gamma)$,

$$(n+1)(x+F(\Gamma),1) - (x,n) = (nx+(n+1)F(\Gamma),1) \in S^s_{\Gamma}$$

FIGURE 2. The Learner monoid S_{Γ}^{7} for $\Gamma = \langle 13, 20, 27, 34, 41, 48, 55, 62 \rangle$

by Lemma 1.3(b). Additionally,

$$n(x+F(\Gamma),1) - (x,n) = ((n-1)x + nF(\Gamma),0) \notin S^s_{\Gamma}$$

since $(n-1)x + nF(\Gamma) > 0$. Thus, (x, n) divides $(n+1)(x+F(\Gamma), 1)$ but no proper subsum of it, so it is a bullet. The last statement clearly follows.

FIGURE 3. The Learner monoid S_{Γ}^{7} for $\Gamma = \langle 18, 25, 32, 39, 46, 53, 60, 67 \rangle$

2. ω -values in arithmetic Leamer monoids

Throughout this section, let $S_{a,k}^d$ be an arithmetic Leamer monoid with gcd(a, d) = 1 and $2 \le k \le d$. In [12], the authors study the factorization properties of arithmetic Leamer monoids. Now, we wish to extend use these results to find the ω -values of all elements in an arithmetic Leamer monoid. We will do so in Theorem 2.1 where we consider the case where (x, n) is not a multiple of (a, k), and then in Theorem 2.6 where consider the case where (x, n) is a multiple of (a, k).

2.1. (x, n) is not a multiple of (a, k). We focus here on the case where $(x, n) \in S_{a,k}^d$ such that $(x, n) \neq p(a, k)$ for any $p \in \mathbb{N}$. By Lemma 1.5, we may choose the largest positive integer m such that x = ma + id where $i \in \{0, \dots, mk\}$. Additionally, let

(1)
$$w = \max\left(n+1, m+\lfloor\frac{a-2}{k}\rfloor+1+\lfloor\frac{a+i-1}{a}\rfloor d\right).$$

Lemmas 2.2 and 2.3 will prove the following.

Theorem 2.1. If $(x,n) \in S_{a,k}^d$ such that $(x,n) \neq p(a,k)$ for any $p \in \mathbb{N}$, then $\omega((x,n)) = w$.

For notation purposes, we let $x \mod a$ represent the least residue of $x \mod a$.

Lemma 2.2. Let $(x, n) \in S_{a,k}^d$ such that $(x, n) \neq p(a, k)$ for any $p \in \mathbb{N}$ and suppose that $c \geq w$. Then (x, n) divides the sum of any c non-zero elements of $S_{a,k}^d$.

Proof. Let
$$y_0 = m + \lfloor \frac{a-2}{k} \rfloor + 1 + \lfloor \frac{a+i-1}{a} \rfloor d$$
, and let
 $x_0 = y_0 a - (ma + id)$
 $= \left(m + \lfloor \frac{a-2}{k} \rfloor + 1 + \lfloor \frac{a+i-1}{a} \rfloor d\right) a - (ma + id)$
 $= \left(\lfloor \frac{a-2}{k} \rfloor + 1\right) a + \left(\lfloor \frac{a+i-1}{a} \rfloor a - i\right) d.$
 $= \left(\lfloor \frac{a-2}{k} \rfloor + 1\right) a + (a+i-1-((a+i-1) \mod a) - i)d$
 $= \left(\lfloor \frac{a-2}{k} \rfloor + 1\right) a + (a-1-((i-1) \mod a))d.$

Since $0 \le a - 1 - ((i-1) \mod a) < a$, there is an infinite column at x_0 by Theorem 1.6, so this also implies that there is an infinite column at $x_0 + sa + td$ for any $s, t \in \mathbb{N}$.

Now, for $1 \leq j \leq c$, let (x_j, n_j) be a non-zero element of $S_{a,k}^d$. Since $x_j \in \langle a, \cdots, a+kd \rangle$, there exists $q_j, i_j \in \mathbb{N}$ such that $x_j = q_j a + i_j d$. Therefore, $\sum_{j=1}^c q_j = y_0 + b$ for some $b \in \mathbb{N}$ since $c \geq y_0$ and each q_j is at least 1. As a result, we see that $\sum_{j=1}^c x_j - x = \sum_{j=1}^c (q_j a + i_j d) - (ma + id) = (y_0 + b)a - (ma + id) + \sum_{j=1}^c i_j d = x_0 + ba + \sum_{j=1}^c i_j d$ by the definition of x_0 . So by our above discussion, there is an infinite column of $S_{a,k}^d$ at $\sum_{j=1}^c x_j - x$. Since $c \geq n+1$ and each $n_j \geq 1$, $\sum_{j=1}^c n_j - n \geq 1$. Therefore, this shows that $\sum_{j=1}^c (x_j, n_j) - (x, n) = \left(\sum_{j=1}^c x_j - x, \sum_{j=1}^c n_j - n\right)$ is in $S_{a,k}^d$, which completes the proof.

If w = n + 1, then by Proposition 1.7 there is a bullet for x of length n + 1, and hence $\omega((x, n)) = n + 1$. We consider the remaining case in the next lemma.

Lemma 2.3. Let $(x,n) \in S_{a,k}^d$ such that $(x,n) \neq p(a,k)$ for any $p \in \mathbb{N}$. If $w = m + \lfloor \frac{a-2}{k} \rfloor + 1 + \lfloor \frac{a+i-1}{a} \rfloor d$, then w(a,k) is a bullet for (x,n).

Proof. Define x_0 and y_0 as they are defined in the proof of Lemma 2.2. Since $w = y_0$, (x, n) divides $y_0(a, k)$ by Lemma 2.2. Now, we wish to show that (x, n) does not divide $(y_0 - 1)(a, k)$.

First, note that

$$(y_0 - 1)a - x = x_0 - a = \left\lfloor \frac{a - 2}{k} \right\rfloor a + (a - 1 - ((i - 1) \mod a)) d,$$

so by Theorem 1.6, there is a finite column at $(y_0 - 1)a - x$ of height

$$\lfloor \frac{a-2}{k} \rfloor k - (a-1 - ((i-1) \mod a))$$

= $\lfloor \frac{a-2}{k} \rfloor k - (a-2) - 1 + ((i-1) \mod a)$
= $(-(a-2) \mod k) + ((i-1) \mod a) - 1$

Now, we wish to show that $(y_0 - 1)k - n$ is greater than this height. To do so, we will first show that $mk + \lfloor \frac{a+i-1}{a} \rfloor dk > n$. First, suppose that there is an infinite column at x = ma+id. Then by Theorem

First, suppose that there is an infinite column at x = ma + id. Then by Theorem 1.6, $m > \lfloor \frac{a-2}{k} \rfloor$. Also, since $w = y_0$, $y_0 - 1 \ge n$. Therefore, since $k \ge 2$ by assumption,

$$mk + \left\lfloor \frac{a+i-1}{a} \right\rfloor dk \ge 2m + \left\lfloor \frac{a+i-1}{a} \right\rfloor dk$$
$$> m + \left\lfloor \frac{a-2}{k} \right\rfloor + \left\lfloor \frac{a+i-1}{a} \right\rfloor d = y_0 - 1 \ge n.$$

Now, suppose that there is a finite column at x = ma + id. Then the height of this column is mk - i by Theorem 1.6, so $n \le mk - i \le mk + \lfloor \frac{a+i-1}{a} \rfloor dk$. Note that if equality holds, then the second inequality implies that i = 0, so the first inequality then implies that n = mk. However, this would mean that (x, n) = (ma, mk) = m(a, k), contradicting the fact that (x, n) is not a multiple of (a, k). Therefore, we obtain the desired result.

We have now shown that $mk + \lfloor \frac{a+i-1}{a} \rfloor dk > n$, so since $(a-2) \ge (i-1)$ mod a-1, $mk + (a-2) + \lfloor \frac{a+i-1}{a} \rfloor dk > (i-1) \mod a+n-1$. Rearranging this inequality, we see that

$$(y_0 - 1)k - n = mk + \left\lfloor \frac{a-2}{k} \right\rfloor k + \left\lfloor \frac{a+i-1}{a} \right\rfloor dk - n$$

> (i-1) mod a - (a-2) mod k - 1,

which is the desired result. Therefore, since $(y_0 - 1)k - n$ is greater than the height of the column at $(y_0 - 1)a - x$, $(y_0 - 1)(a, k) - (x, n)$ is not in $S_{a,k}^d$.

2.2. (x, n) is a multiple of (a, k). Throughout this subsection, let (x, n) = m(a, k) for some $m \in \mathbb{N}^*$. We wish to show in the following lemmas that $\omega((x, n)) = n + 1$.

Lemma 2.4. Let $(x,n) \in S_{a,k}^d$ such that (x,n) = m(a,k) for some $m \in \mathbb{N}$. If $c \geq mk + 1$, then (x,n) divides the sum of any c non-zero elements of $S_{a,k}^d$.

Proof. For $1 \leq j \leq c$, let $(x_j, n_j) \in S_{a,k}^d$ be a non-zero element. By Lemma 1.5, this means that there exists $q_j, i_j \in \mathbb{N}$ such that $x_j = q_j a + i_j d$ and $0 \leq i_j \leq q_j k$. We now divide the claim into two cases.

First, suppose that some $q_l > \lfloor \frac{a-2}{k} \rfloor$. Then

$$\sum_{j=1}^{c} q_j - m = \sum_{j=1, j \neq l}^{c} q_j + q_l - m \ge mk - m + q_l \ge q_l \ge \left\lfloor \frac{a-2}{k} \right\rfloor + 1.$$

Therefore,

۲

$$\sum_{j=1}^{c} x_j - x = \sum_{j=1}^{c} (q_j a + i_j d) - ma$$
$$= \left(\sum_{j=1}^{c} q_j - m\right) a + \sum_{j=1}^{c} i_j d$$
$$= \left(\left\lfloor \frac{a-2}{k} \right\rfloor + 1 + s\right) a + td$$

for some $s, t \in \mathbb{N}$. By Theorem 1.6, there is an infinite column at $\left(\lfloor \frac{a-2}{k} \rfloor + 1 \right) a$, so it follows that there is an infinite column at $\left(\lfloor \frac{a-2}{k} \rfloor + 1 \right) a + sa + td$ for any $s, t \in \mathbb{N}$. Since there is an infinite column at $\sum_{j=1}^{c} x_j - x$ and since $\sum_{j=1}^{c} n_j - n \ge c - mk \ge 1$, (x,n) divides $\sum_{j=1}^{c} (x_j, n_j)$.

Now, suppose that $q_j \leq \lfloor \frac{a-2}{k} \rfloor$ for all $1 \leq j \leq c$. By Theorem 1.6, $1 \leq n_j \leq q_j k - i_j$, so $i_j \leq q_j k - n_j \leq q_j k - 1$. Therefore,

$$0 \le \sum_{j=1}^{c} i_j \le \sum_{j=1}^{c} q_j k - c \le \sum_{j=1}^{c} q_j k - (mk+1) = \left(\sum_{j=1}^{c} q_j - m\right) k - 1,$$

so $\sum_{j=1}^{c} x_j - x = \left(\sum_{j=1}^{c} q_j - m\right) a + \sum_{j=1}^{c} i_j d$ is in $\langle a, a+d, \cdots, a+kd \rangle$ by Lemma 1.5.

Additionally, by the same lemma, there exists unique $q', i' \in \mathbb{N}$ such that $\sum_{i=1}^{c} x_j - x =$ q'a + i'd and $0 \le i' < a$. Let $\lambda \in \mathbb{Z}$ such that $(q', i') - \left(\sum_{j=1}^{c} q_j - m, \sum_{j=1}^{c} i_j\right) =$ $\lambda(d,-a)$. Since i' < a and each $i_j \ge 0, \lambda \ge 0$. Therefore, by Theorem 1.6, the height of column at $\sum_{j=1}^{c} x_j - x$ is

$$q'k - i' = \left(\sum_{j=1}^{c} q_j - m + \lambda d\right) k - \left(\sum_{j=1}^{c} i_j - \lambda a\right)$$
$$\geq \left(\sum_{j=1}^{c} q_j - m\right) k - \sum_{j=1}^{c} i_j$$
$$\geq \sum_{j=1}^{c} n_j - mk,$$

where the last inequality follows from the fact that $n_j \leq q_j k - i_j$. Therefore, since $c \ge mk+1, \ 1 \le \sum_{i=1}^{c} n_j - n \le q'k - i', \ \text{so} \ \sum_{j=1}^{c} (x_j, n_j) - (x, n) \ \text{is in} \ S^d_{a,k}.$

Now, we wish to find an element of length n + 1 = mk + 1 such that no proper subsum of it is divisible by (x, n).

Lemma 2.5. Let $(x, n) \in S_{a,k}^d$ such that (x, n) = m(a, k) for some $m \in \mathbb{N}$. Then (n+1)(a+x, 1) is divisible by (x, n), but no proper subsum is divisible by (x, n).

Proof. By Lemma 2.4, (x, n) divides (n + 1)(a + x, 1). Therefore, we only need to show that it does not divide any proper subsum. Since n(a + x, 1) - (x, n) = (na + (n - 1)x, 0), and na + (n - 1)x > 0, the result follows.

By the definition of the ω -function, the above lemmas imply the next result.

Theorem 2.6. If $(x,n) \in S_{a,k}^d$ such that (x,n) = m(a,k) for some $m \in \mathbb{N}$, then $\omega((x,n)) = n + 1$.

We close with a brief example.

Example 2.7. Setting $\Gamma = \langle 13, 20, 27, 34, 41, 48, 55, 62 \rangle$, we return to the Leamer monoid of Figure 2. In the language of Theorems 2.1 and 2.6, we have that a = 13, d = 7, and k = 7. If $(x, n) \in S^7_{13,7}$, then from (1), we have that

$$w = \max\left(n+1, m+2 + \left\lfloor\frac{12+i}{13}\right\rfloor7\right).$$

Hence

$$\omega(x) = \begin{cases} \max\left(n+1, m+2 + \lfloor \frac{12+i}{13} \rfloor 7\right) & \text{if} \quad (x,n) \neq p(13,7) \text{ for any } p \in \mathbb{N} \\ n+1 & \text{if} \quad (x,n) = p(13,7) \text{ for some } p \in \mathbb{N}. \end{cases}$$

Notice if x is relatively large with respect to n (i.e., m > n), then the last array reduces to

$$\omega(x) = \begin{cases} m+2+\lfloor \frac{12+i}{13} \rfloor & \text{if} \quad (x,n) \neq p(13,7) \text{ for any } p \in \mathbb{N} \\ n+1 & \text{if} \quad (x,n) = p(13,7) \text{ for some } p \in \mathbb{N}. \end{cases}$$

Acknowledgement

It is a pleasure for the authors to thank an unknown referee for comments that greatly improved the final manuscript.

References

- D. F. Anderson and S. T. Chapman, 2010. How far is an element from being prime?. J. Algebra Appl. 9(2010), 779–789.
- [2] D. F. Anderson, S. T. Chapman, N. Kaplan and D. Torkornoo, An algorithm to compute ω-primality in a numerical monoid, *Semigroup Forum* 82(2011), 96–108.
- [3] T. Barron, C. O'Neill, and R. Pelayo, On dynamic algorithms for factorization invariants in numerical monoids, *Math. Comp.* 86 (2017), 2429–2447.
- [4] C. Bowles, S. T. Chapman, N. Kaplan, and D. Reiser, On delta sets of numerical monoids. J. Algebra Appl. 5(2006), 695–718.
- [5] S. T. Chapman, M. Corrales, A. Miller, C. Miller, C. and D. Patel, The catenary and tame degrees on a numerical monoid are eventually periodic, J. Australian Math. Soc., 97(2014), 289–300.
- [6] S. T. Chapman, P. A. García-Sánchez, D. Llena, The catenary and tame degree of numerical semigroups, *Forum Math.* 21(2009), 117–129.
- [7] S. T. Chapman, P. A. García-Sánchez, P. A., Tripp, Z., and C. Viola, Measuring primality in numerical semigroups with embedding dimension three, J. Algebra Appl. 15(2016), 1650007.
- [8] S. T. Chapman, W. Puckett, and K. Shour, On the omega values of generators of embedding dimension three numerical monoids generated by an interval, *Involve* 7(2014), 657–667.
- [9] J.I. García-García, M.A. Moreno-Frías, and A. Vigneron-Tenorio, Computation of the ωprimality and asymptotic ω-primality with applications to numerical semigroups, *Israel J. Math* **206**(2015), 395–411.

- [10] P.A. García-Sánchez and M.J. Leamer. Huneke-Wiegand Conjecture for complete intersection numerical semigroup, J. Algebra 391(2013), 114-124
- [11] P. A. García-Sánchez and J. C. Rosales, Numerical Semigroups, vol. 20, Developments in Mathematics, Springer-Verlag, 2009.
- [12] C. Haarmann, A. Kalauli, A. Moran, C. O'Neill, R. Pelayo. Factorization properties of Learner monoids. Semigroup Forum 89(2014), 409–421.
- [13] G. L. Matthews, On numerical semigroups generated by generalized arithmetic sequences, Comm. Algebra 32(2004), 3459–3469.
- [14] C. O'Neill, On factorization invariants and Hilbert functions, J. Pure Appl. Algebra 221 (2017), 3069–3088.
- [15] C. O'Neill, R. Pelayo. On the Linearity of Omega-Primality in Numerical Monoids, J. Pure Appl. Algebra 218 (2014), 1620–1627.
- [16] C. O'Neill and R. Pelayo. How do you measure primality?, Amer. Math. Monthly 122 (2015), 121–137.
- [17] C. O'Neill and R. Pelayo, Factorization invariants in numerical monoids, Algebraic and Geometric Methods in Discrete Mathematics 685 (2017), 231.

Department of Mathematics and Statistics, Sam Houston State University, Huntsville, TX $\,77341$

Email address: scott.chapman@shsu.edu URL: www.shsu.edu/~stc008/

Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville, TN37240

 $Email \ address: \verb"zachary.d.tripp@vanderbilt.edu"$