ω-PRIMALITY IN ARITHMETIC LEAMER MONOIDS

SCOTT T. CHAPMAN AND ZACK TRIPP

Abstract

Let Γ be a numerical semigroup. The Leamer monoid S_{Γ}^{s}, for $s \in$ $\mathbb{N} \backslash \Gamma$, is the monoid consisting of arithmetic sequences of step size s contained in Γ. In this note, we give a formula for the ω-primality of elements in S_{Γ}^{s} when Γ is an numerical semigroup generated by a arithmetic sequence of positive integers.

1. Preliminaries

A numerical monoid S is an additive submonoid of the nonnegative integers \mathbb{N}_{0} under regular addition such that $\left|\mathbb{N}_{0}-S\right|<\infty$ ([11] is a good general reference on this subject). A great deal of literature has appeared over the past 15 years which studies the nonunique factorization properties of these monoids (for instance, see [4], 6], and [5] and the references therein). Among the factorization constants studied on these objects is the ω-primality function (referred to hereafter as the ω-function), which in some sense measures how far an element $x \in S$ is from being a prime element. A general survey of these results can be found in [16, while the papers [2], 3], and (9] all consider issues related to algorithms for computing specific values of the ω-function. Other papers that touch on this subject in more specific terms are [7], 8], [14, and [17]. In this paper, we pick up on the study begun in [12] of the factorization properties of Leamer monoids, which are constructed using numerical monoids. Leamer monoids first appeared in [10] and were used in that paper to study the Huneke-Wiegand conjecture from commutative algebra. In our current work, we address a particular case of Problem 5.4 in [12] and completely determine the behavior of the ω-function on a Leamer monoid generated by an arithmetic numerical monoid (i.e, a numerical monoid generated by an arithmetic sequence of integers). Our final results are summarized in Theorems 2.3 and 2.6. We find these results of interest for several reasons reasons:

- ω-function calculations can be extremely complex, and an intrictate algorithm for their computation has recently appeared in 9];
- the complete behavior of the ω-function on general commutative cancellative monoids is known in only a few cases (one of which is the numerical monoid $\langle a, b\rangle$ which is proved in [2] and summarized in [16);
- the complete behavior of the ω-function on the underlying arithmetical numerical monoid (of the Leamer monoid we are considering) is itself unknown.
Before proceeding to our main result, we offer a series of definitions. We begin with a general definition of the ω-function itself.

[^0]Definition 1.1. Let S be a commutative cancellative monoid. For any nonunit $x \in S$, define $\omega(x)=m$ if m is the smallest positive integer such that whenever x divides $x_{1} \cdots x_{t}$, with $x_{i} \in S$, then there is a set $T \subset\{1,2, \ldots, t\}$ of indices with $|T| \leq m$ such that x divides $\sum_{i \in T} x_{i}$. If no such m exists, then set $\omega(x)=\infty$.
When S is clear from the context, we simply write $\omega(n)$. A collection of basic facts concerning the ω-function can be found in [1, Section 2]. Needless to say, an element $x \in S$ is prime if and only if $\omega(x)=1$. The definition of a Leamer monoid follows.

Definition 1.2. Let Γ be a numerical monoid and $s \in \mathbb{N} \backslash \Gamma$. Set

$$
S_{\Gamma}^{s}=\{(0,0)\} \cup\{(x, n):\{x, x+s, x+2 x, \ldots, x+n s\} \subset \Gamma\} \subset \mathbb{N}^{2}
$$

Thus S_{Γ}^{s} is the collection of arithmetic sequences of step size s contained in Γ. Under regular addition on $\mathbb{N}^{2}, S_{\Gamma}^{s}$ is a monoid known as a Leamer monoid.

As we will be working within \mathbb{N}^{2} under addition, we remind the reader of the notion of divisibility in \mathbb{N}^{2}. If x and $y \in \mathbb{N}^{2}$, then we say that x divides y if there is a $z \in \mathbb{N}^{2}$ such that $x+z=y$.

We define the column at $x \in \Gamma$ to be the set $\left\{(x, n) \in S_{\Gamma}^{s}: n \geq 1\right\}$. We say that the column at x is infinite (resp. finite) if the cardinality of the column at x is infinite (resp. finite). For a finite column, the height of the column is $\max \left\{n:(x, n) \in S_{\Gamma}^{s}\right\}$ and we define x_{f} to be the first infinite column in S_{Γ}^{s}. The largest positive integer not in Γ is know as the Frobenius number and we denote this as $F(\Gamma)$. Since $S_{\Gamma}^{s} \subseteq \mathbb{N}^{2}$, we can graphically represent S_{Γ}^{s}, and we do so below in the case where $\Gamma=\langle 12,13,20\rangle$ with $s=1$. The red dots in the graph represent irreducible elements of S_{Γ}^{s}.

Figure 1. The Leamer monoid S_{Γ}^{1} for $\Gamma=\langle 12,13,20\rangle$
The following result from [12, Lemma 2.8] will give us some basic factorization properties of an arbitrary Leamer monoid. Note that $\mathcal{A}\left(S_{\Gamma}^{s}\right)$ is the set of irreducible elements (or atoms) of S_{Γ}^{s}.
Lemma 1.3. (a) For $n \gg 0,\left(x_{f}, n\right) \in \mathcal{A}\left(S_{\Gamma}^{s}\right)$.
(b) The column at every $x>F(\Gamma)$ is infinite.

Suppose that $\omega(n)$ is finite. To find this value, it is often helpful to consider the bullets for n. A product of irreducibles $x_{1} \cdots x_{k}$ is said to be a bullet for n if n divides the product $x_{1} x_{2} \cdots x_{k}$ but does not divide any proper subproduct. If bul (x) represents the set of bullets of x, then the following proposition [16, Proposition 2.10] will be key in our coming calculations.

Proposition 1.4. If M is a commutative cancellative monoid and x a nonunit of M, then

$$
\omega(x)=\sup \left\{r \mid x_{1} \cdots x_{r} \in \operatorname{bul}(x) \text { where each } x_{i} \text { is irreducible in } M\right\}
$$

There has been fairly extensive study of the ω-function on numerical monoids in recent years. Of particular interest is the following result 15. Theorem 3.6], which describes the eventual behavior of the ω-function. If $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ is a numerical monoid, then for n sufficiently large, $\omega(n)$ is quasilinear with period dividing n_{1}. In particular, there exists an explicit N_{0} such that $\omega\left(n+n_{1}\right)=\omega(n)+1$ for $n>N_{0}$. Hence, for sufficiently large $n, \omega(n)=\frac{n}{n_{1}}+a_{0}(n)$, where $a_{0}(n)$ has period dividing n_{1}.

For the remainder of our work, we focus on numerical monoids generated by arithmetic sequences (a good general reference on this topic is 13). So let $S=$ $\langle a, a+d, \ldots, a+k d\rangle$, where $\operatorname{gcd}(a, d)=1$ and $1 \leq k<a$.
Lemma 1.5. [6, Lemmas $7 \& 8$]
(1) Let n be a nonnegative integer. Then $n \in S$ if and only if $n=q a+j d$ with $q \in \mathbb{N}$ and $0 \leq j \leq k q$.
(2) If $n=q a+j d$ with $q \in \mathbb{N}$ and $0 \leq j \leq k q$, then there is a factorization of n in S of length q.
(3) Let n be an integer with $n=u a+v d=u^{\prime} a+v^{\prime} d$. Then there exists an integer λ such that $(u, v)-\left(u^{\prime}, v^{\prime}\right)=\lambda(d,-a)$.
(4) If $n=q a+j d$ with $q \in \mathbb{N}$ and $0 \leq j<a$, then q is the longest length of factorization of n in S.

We say that a Leamer monoid is arithmetic if Γ is an arithmetic numerical semigroup with $k \geq 2$ and s is the difference of the arithmetic sequence. If $\Gamma=\langle a, a+d, \cdots, a+k d\rangle$, then we will write $S_{\Gamma}^{s}=S_{a, k}^{d}$. We offer graphical representations of arithmetic Leamer monoids in Figures 2 and 3. Additionally, the following result tells us more about factorization properties of arithmetic Leamer monoids, which we will use to characterize the ω-function in such monoids.
Theorem 1.6. [12, Lemma 4.3 (a)] Fix an arithmetic Leamer monoid $S_{a, k}^{d}$, and let $x=m a+i d$, where $m, i \in \mathbb{N}$ and $0 \leq i<a$. Then $S_{a, k}^{d}$ has a finite column at x if and only if $m \leq\left\lfloor\frac{a-2}{k}\right\rfloor$ and $0 \leq i \leq k m-1$. In this case, the column at x has height $k m-i$.

Finally, we offer a lower bound on the ω-function in a general Leamer monoid. Note that we are only considering nonunit elements, i.e. $(x, n) \neq(0,0)$, so $n \geq 1$ by the definition of a Leamer monoid.
Proposition 1.7. If $(x, n) \in S_{\Gamma}^{s}$, then (x, n) has a bullet of length $n+1$. Hence, $\omega((x, n)) \geq n+1$ and no element in a Leamer monoid is prime.
Proof. We wish to show that $(n+1)(x+F(\Gamma), 1)$ is a bullet for (x, n). Since $n x+(n+1) F(\Gamma) \geq F(\Gamma)$,

$$
(n+1)(x+F(\Gamma), 1)-(x, n)=(n x+(n+1) F(\Gamma), 1) \in S_{\Gamma}^{s}
$$

Figure 2. The Leamer monoid S_{Γ}^{7} for $\Gamma=\langle 13,20,27,34,41,48,55,62\rangle$
by Lemma 1.3 (b). Additionally,

$$
n(x+F(\Gamma), 1)-(x, n)=((n-1) x+n F(\Gamma), 0) \notin S_{\Gamma}^{s}
$$

since $(n-1) x+n F(\Gamma)>0$. Thus, (x, n) divides $(n+1)(x+F(\Gamma), 1)$ but no proper subsum of it, so it is a bullet. The last statement clearly follows.

Figure 3. The Leamer monoid S_{Γ}^{7} for $\Gamma=\langle 18,25,32,39,46,53,60,67\rangle$

2. ω-VALUES IN ARITHMETIC LEAMER MONOIDS

Throughout this section, let $S_{a, k}^{d}$ be an arithmetic Leamer monoid with $\operatorname{gcd}(a, d)=$ 1 and $2 \leq k \leq d$. In [12], the authors study the factorization properties of arithmetic Leamer monoids. Now, we wish to extend use these results to find the ω-values of all elements in an arithmetic Leamer monoid. We will do so in Theorem 2.1 where we consider the case where (x, n) is not a multiple of (a, k), and then in Theorem 2.6 where consider the case where (x, n) is a multiple of (a, k).
2.1. (x, n) is not a multiple of (a, k). We focus here on the case where $(x, n) \in$ $S_{a, k}^{d}$ such that $(x, n) \neq p(a, k)$ for any $p \in \mathbb{N}$. By Lemma 1.5 we may choose the largest positive integer m such that $x=m a+i d$ where $i \in\{0, \cdots, m k\}$. Additionally, let

$$
\begin{equation*}
w=\max \left(n+1, m+\left\lfloor\frac{a-2}{k}\right\rfloor+1+\left\lfloor\frac{a+i-1}{a}\right\rfloor d\right) . \tag{1}
\end{equation*}
$$

Lemmas 2.2 and 2.3 will prove the following.

Theorem 2.1. If $(x, n) \in S_{a, k}^{d}$ such that $(x, n) \neq p(a, k)$ for any $p \in \mathbb{N}$, then $\omega((x, n))=w$.

For notation purposes, we let $x \bmod a$ represent the least residue of x modulo a.
Lemma 2.2. Let $(x, n) \in S_{a, k}^{d}$ such that $(x, n) \neq p(a, k)$ for any $p \in \mathbb{N}$ and suppose that $c \geq w$. Then (x, n) divides the sum of any c non-zero elements of $S_{a, k}^{d}$.
Proof. Let $y_{0}=m+\left\lfloor\frac{a-2}{k}\right\rfloor+1+\left\lfloor\frac{a+i-1}{a}\right\rfloor d$, and let

$$
\begin{aligned}
x_{0} & =y_{0} a-(m a+i d) \\
& =\left(m+\left\lfloor\frac{a-2}{k}\right\rfloor+1+\left\lfloor\frac{a+i-1}{a}\right\rfloor d\right) a-(m a+i d) \\
& =\left(\left\lfloor\frac{a-2}{k}\right\rfloor+1\right) a+\left(\left\lfloor\frac{a+i-1}{a}\right\rfloor a-i\right) d \\
& =\left(\left\lfloor\frac{a-2}{k}\right\rfloor+1\right) a+(a+i-1-((a+i-1) \bmod a)-i) d \\
& =\left(\left\lfloor\frac{a-2}{k}\right\rfloor+1\right) a+(a-1-((i-1) \bmod a)) d .
\end{aligned}
$$

Since $0 \leq a-1-((i-1) \bmod a)<a$, there is an infinite column at x_{0} by Theorem 1.6 , so this also implies that there is an infinite column at $x_{0}+s a+t d$ for any $s, t \in \mathbb{N}$.

Now, for $1 \leq j \leq c$, let $\left(x_{j}, n_{j}\right)$ be a non-zero element of $S_{a, k}^{d}$. Since $x_{j} \in$ $\langle a, \cdots, a+k d\rangle$, there exists $q_{j}, i_{j} \in \mathbb{N}$ such that $x_{j}=q_{j} a+i_{j} d$. Therefore, $\sum_{j=1}^{c} q_{j}=$ $y_{0}+b$ for some $b \in \mathbb{N}$ since $c \geq y_{0}$ and each q_{j} is at least 1 . As a result, we see that $\sum_{j=1}^{c} x_{j}-x=\sum_{j=1}^{c}\left(q_{j} a+i_{j} d\right)-(m a+i d)=\left(y_{0}+b\right) a-(m a+i d)+\sum_{j=1}^{c} i_{j} d=$ $x_{0}+b a+\sum_{j=1}^{c} i_{j} d$ by the definition of x_{0}. So by our above discussion, there is an infinite column of $S_{a, k}^{d}$ at $\sum_{j=1}^{c} x_{j}-x$. Since $c \geq n+1$ and each $n_{j} \geq 1, \sum_{j=1}^{c} n_{j}-n \geq 1$. Therefore, this shows that $\sum_{j=1}^{c}\left(x_{j}, n_{j}\right)-(x, n)=\left(\sum_{j=1}^{c} x_{j}-x, \sum_{j=1}^{c} n_{j}-n\right)$ is in $S_{a, k}^{d}$, which completes the proof.

If $w=n+1$, then by Proposition 1.7 there is a bullet for x of length $n+1$, and hence $\omega((x, n))=n+1$. We consider the remaining case in the next lemma.
Lemma 2.3. Let $(x, n) \in S_{a, k}^{d}$ such that $(x, n) \neq p(a, k)$ for any $p \in \mathbb{N}$. If $w=m+\left\lfloor\frac{a-2}{k}\right\rfloor+1+\left\lfloor\frac{a+i-1}{a}\right\rfloor d$, then $w(a, k)$ is a bullet for (x, n).
Proof. Define x_{0} and y_{0} as they are defined in the proof of Lemma 2.2. Since $w=y_{0},(x, n)$ divides $y_{0}(a, k)$ by Lemma 2.2. Now, we wish to show that (x, n) does not divide $\left(y_{0}-1\right)(a, k)$.

First, note that

$$
\left(y_{0}-1\right) a-x=x_{0}-a=\left\lfloor\frac{a-2}{k}\right\rfloor a+(a-1-((i-1) \quad \bmod a)) d
$$

so by Theorem 1.6, there is a finite column at $\left(y_{0}-1\right) a-x$ of height

$$
\begin{aligned}
& \left\lfloor\frac{a-2}{k}\right\rfloor k-(a-1-((i-1) \quad \bmod a)) \\
= & \left\lfloor\frac{a-2}{k}\right\rfloor k-(a-2)-1+((i-1) \quad \bmod a) \\
= & (-(a-2) \bmod k)+((i-1) \quad \bmod a)-1 .
\end{aligned}
$$

Now, we wish to show that $\left(y_{0}-1\right) k-n$ is greater than this height. To do so, we will first show that $m k+\left\lfloor\frac{a+i-1}{a}\right\rfloor d k>n$.

First, suppose that there is an infinite column at $x=m a+i d$. Then by Theorem 1.6. $m>\left\lfloor\frac{a-2}{k}\right\rfloor$. Also, since $w=y_{0}, y_{0}-1 \geq n$. Therefore, since $k \geq 2$ by assumption,

$$
\begin{aligned}
& m k+\left\lfloor\frac{a+i-1}{a}\right\rfloor d k \geq 2 m+\left\lfloor\frac{a+i-1}{a}\right\rfloor d k \\
&>m+\left\lfloor\frac{a-2}{k}\right\rfloor+\left\lfloor\frac{a+i-1}{a}\right\rfloor d=y_{0}-1 \geq n
\end{aligned}
$$

Now, suppose that there is a finite column at $x=m a+i d$. Then the height of this column is $m k-i$ by Theorem 1.6, so $n \leq m k-i \leq m k+\left\lfloor\frac{a+i-1}{a}\right\rfloor d k$. Note that if equality holds, then the second inequality implies that $i=0$, so the first inequality then implies that $n=m k$. However, this would mean that $(x, n)=$ $(m a, m k)=m(a, k)$, contradicting the fact that (x, n) is not a multiple of (a, k). Therefore, we obtain the desired result.

We have now shown that $m k+\left\lfloor\frac{a+i-1}{a}\right\rfloor d k>n$, so since $(a-2) \geq(i-1)$ $\bmod a-1, m k+(a-2)+\left\lfloor\frac{a+i-1}{a}\right\rfloor d k>(i-1) \bmod a+n-1$. Rearranging this inequality, we see that

$$
\begin{aligned}
\left(y_{0}-1\right) k-n=m k+\left\lfloor\frac{a-2}{k}\right\rfloor k+\lfloor & \left\lfloor\frac{a+i-1}{a}\right\rfloor d k-n \\
& >(i-1) \bmod a-(a-2) \bmod k-1
\end{aligned}
$$

which is the desired result. Therefore, since $\left(y_{0}-1\right) k-n$ is greater than the height of the column at $\left(y_{0}-1\right) a-x,\left(y_{0}-1\right)(a, k)-(x, n)$ is not in $S_{a, k}^{d}$.
2.2. (x, n) is a multiple of (a, k). Throughout this subsection, let $(x, n)=m(a, k)$ for some $m \in \mathbb{N}^{*}$. We wish to show in the following lemmas that $\omega((x, n))=n+1$.

Lemma 2.4. Let $(x, n) \in S_{a, k}^{d}$ such that $(x, n)=m(a, k)$ for some $m \in \mathbb{N}$. If $c \geq m k+1$, then (x, n) divides the sum of any c non-zero elements of $S_{a, k}^{d}$.

Proof. For $1 \leq j \leq c$, let $\left(x_{j}, n_{j}\right) \in S_{a, k}^{d}$ be a non-zero element. By Lemma 1.5 , this means that there exists $q_{j}, i_{j} \in \mathbb{N}$ such that $x_{j}=q_{j} a+i_{j} d$ and $0 \leq i_{j} \leq q_{j} k$. We now divide the claim into two cases.

First, suppose that some $q_{l}>\left\lfloor\frac{a-2}{k}\right\rfloor$. Then

$$
\sum_{j=1}^{c} q_{j}-m=\sum_{j=1, j \neq l}^{c} q_{j}+q_{l}-m \geq m k-m+q_{l} \geq q_{l} \geq\left\lfloor\frac{a-2}{k}\right\rfloor+1
$$

Therefore,

$$
\begin{aligned}
\sum_{j=1}^{c} x_{j}-x & =\sum_{j=1}^{c}\left(q_{j} a+i_{j} d\right)-m a \\
& =\left(\sum_{j=1}^{c} q_{j}-m\right) a+\sum_{j=1}^{c} i_{j} d \\
& =\left(\left\lfloor\frac{a-2}{k}\right\rfloor+1+s\right) a+t d
\end{aligned}
$$

for some $s, t \in \mathbb{N}$. By Theorem 1.6. there is an infinite column at $\left(\left\lfloor\frac{a-2}{k}\right\rfloor+1\right) a$, so it follows that there is an infinite column at $\left(\left\lfloor\frac{a-2}{k}\right\rfloor+1\right) a+s a+t d$ for any $s, t \in \mathbb{N}$. Since there is an infinite column at $\sum_{j=1}^{c} x_{j}-x$ and since $\sum_{j=1}^{c} n_{j}-n \geq c-m k \geq 1$, (x, n) divides $\sum_{j=1}^{c}\left(x_{j}, n_{j}\right)$.

Now, suppose that $q_{j} \leq\left\lfloor\frac{a-2}{k}\right\rfloor$ for all $1 \leq j \leq c$. By Theorem $1.6,1 \leq n_{j} \leq$ $q_{j} k-i_{j}$, so $i_{j} \leq q_{j} k-n_{j} \leq q_{j} k-1$. Therefore,

$$
0 \leq \sum_{j=1}^{c} i_{j} \leq \sum_{j=1}^{c} q_{j} k-c \leq \sum_{j=1}^{c} q_{j} k-(m k+1)=\left(\sum_{j=1}^{c} q_{j}-m\right) k-1
$$

so $\sum_{j=1}^{c} x_{j}-x=\left(\sum_{j=1}^{c} q_{j}-m\right) a+\sum_{j=1}^{c} i_{j} d$ is in $\langle a, a+d, \cdots, a+k d\rangle$ by Lemma 1.5 Additionally, by the same lemma, there exists unique $q^{\prime}, i^{\prime} \in \mathbb{N}$ such that $\sum_{j=1}^{c} x_{j}-x=$ $q^{\prime} a+i^{\prime} d$ and $0 \leq i^{\prime}<a$. Let $\lambda \in \mathbb{Z}$ such that $\left(q^{\prime}, i^{\prime}\right)-\left(\sum_{j=1}^{c} q_{j}-m, \sum_{j=1}^{c} i_{j}\right)=$ $\lambda(d,-a)$. Since $i^{\prime}<a$ and each $i_{j} \geq 0, \lambda \geq 0$. Therefore, by Theorem 1.6, the height of column at $\sum_{j=1}^{c} x_{j}-x$ is

$$
\begin{aligned}
q^{\prime} k-i^{\prime} & =\left(\sum_{j=1}^{c} q_{j}-m+\lambda d\right) k-\left(\sum_{j=1}^{c} i_{j}-\lambda a\right) \\
& \geq\left(\sum_{j=1}^{c} q_{j}-m\right) k-\sum_{j=1}^{c} i_{j} \\
& \geq \sum_{j=1}^{c} n_{j}-m k
\end{aligned}
$$

where the last inequality follows from the fact that $n_{j} \leq q_{j} k-i_{j}$. Therefore, since $c \geq m k+1,1 \leq \sum_{j=1}^{c} n_{j}-n \leq q^{\prime} k-i^{\prime}$, so $\sum_{j=1}^{c}\left(x_{j}, n_{j}\right)-(x, n)$ is in $S_{a, k}^{d}$.

Now, we wish to find an element of length $n+1=m k+1$ such that no proper subsum of it is divisible by (x, n).

Lemma 2.5. Let $(x, n) \in S_{a, k}^{d}$ such that $(x, n)=m(a, k)$ for some $m \in \mathbb{N}$. Then $(n+1)(a+x, 1)$ is divisible by (x, n), but no proper subsum is divisible by (x, n).

Proof. By Lemma 2.4. (x, n) divides $(n+1)(a+x, 1)$. Therefore, we only need to show that it does not divide any proper subsum. Since $n(a+x, 1)-(x, n)=$ $(n a+(n-1) x, 0)$, and $n a+(n-1) x>0$, the result follows.

By the definition of the ω-function, the above lemmas imply the next result.
Theorem 2.6. If $(x, n) \in S_{a, k}^{d}$ such that $(x, n)=m(a, k)$ for some $m \in \mathbb{N}$, then $\omega((x, n))=n+1$.

We close with a brief example.
Example 2.7. Setting $\Gamma=\langle 13,20,27,34,41,48,55,62\rangle$, we return to the Leamer monoid of Figure 2. In the language of Theorems 2.1 and 2.6. we have that $a=13$, $d=7$, and $k=7$. If $(x, n) \in S_{13,7}^{7}$, then from (1), we have that

$$
w=\max \left(n+1, m+2+\left\lfloor\frac{12+i}{13}\right\rfloor 7\right) .
$$

Hence

$$
\omega(x)= \begin{cases}\max \left(n+1, m+2+\left\lfloor\frac{12+i}{13}\right\rfloor 7\right) & \text { if } \quad(x, n) \neq p(13,7) \text { for any } p \in \mathbb{N} \\ n+1 & \text { if } \quad(x, n)=p(13,7) \text { for some } p \in \mathbb{N}\end{cases}
$$

Notice if x is relatively large with respect to n (i.e., $m>n$), then the last array reduces to

$$
\omega(x)= \begin{cases}m+2+\left\lfloor\frac{12+i}{13}\right\rfloor 7 & \text { if } \quad(x, n) \neq p(13,7) \text { for any } p \in \mathbb{N} \\ n+1 & \text { if } \quad(x, n)=p(13,7) \text { for some } p \in \mathbb{N}\end{cases}
$$

Acknowledgement

It is a pleasure for the authors to thank an unknown referee for comments that greatly improved the final manuscript.

References

[1] D. F. Anderson and S. T. Chapman, 2010. How far is an element from being prime?. J. Algebra Appl. 9(2010), 779-789.
[2] D. F. Anderson, S. T. Chapman, N. Kaplan and D. Torkornoo, An algorithm to compute ω-primality in a numerical monoid, Semigroup Forum 82(2011), 96-108.
[3] T. Barron, C. O'Neill, and R. Pelayo, On dynamic algorithms for factorization invariants in numerical monoids, Math. Comp. 86 (2017), 2429-2447.
[4] C. Bowles, S. T. Chapman, N. Kaplan, and D. Reiser, On delta sets of numerical monoids. J. Algebra Appl. 5(2006), 695-718.
[5] S. T. Chapman, M. Corrales, A. Miller, C. Miller, C. and D. Patel, The catenary and tame degrees on a numerical monoid are eventually periodic, J. Australian Math. Soc., 97(2014), 289-300.
[6] S. T. Chapman, P. A. García-Sánchez, D. Llena, The catenary and tame degree of numerical semigroups, Forum Math. 21(2009), 117-129.
[7] S. T. Chapman, P. A. García-Sánchez, P. A., Tripp, Z., and C. Viola, Measuring primality in numerical semigroups with embedding dimension three, J. Algebra Appl. 15(2016), 1650007.
[8] S. T. Chapman, W. Puckett, and K. Shour, On the omega values of generators of embedding dimension three numerical monoids generated by an interval, Involve $\mathbf{7}(2014)$, 657-667.
[9] J.I. García-García, M.A. Moreno-Frías, and A. Vigneron-Tenorio, Computation of the ω primality and asymptotic ω-primality with applications to numerical semigroups, Israel J. Math 206(2015), 395-411.
[10] P.A. García-Sánchez and M.J. Leamer. Huneke-Wiegand Conjecture for complete intersection numerical semigroup, J. Algebra 391(2013), 114-124
[11] P. A. García-Sánchez and J. C. Rosales, Numerical Semigroups, vol. 20, Developments in Mathematics, Springer-Verlag, 2009.
[12] C. Haarmann, A. Kalauli, A. Moran, C. O'Neill, R. Pelayo. Factorization properties of Leamer monoids. Semigroup Forum 89(2014), 409-421.
[13] G. L. Matthews, On numerical semigroups generated by generalized arithmetic sequences, Comm. Algebra 32(2004), 3459-3469.
[14] C. O'Neill, On factorization invariants and Hilbert functions, J. Pure Appl. Algebra 221 (2017), 3069-3088.
[15] C. O'Neill, R. Pelayo. On the Linearity of Omega-Primality in Numerical Monoids, J. Pure Appl. Algebra 218 (2014), 1620-1627.
[16] C. O'Neill and R. Pelayo. How do you measure primality?, Amer. Math. Monthly 122 (2015), 121-137.
[17] C. O'Neill and R. Pelayo, Factorization invariants in numerical monoids, Algebraic and Geometric Methods in Discrete Mathematics 685 (2017), 231.

Department of Mathematics and Statistics, Sam Houston State University, Huntsville, TX 77341

Email address: scott.chapman@shsu.edu
URL: www.shsu.edu/~stc008/
Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville, TN 37240

Email address: zachary.d.tripp@vanderbilt.edu

[^0]: Both author gratefully acknowledge support from the National Science Foundation under grant DMS-1262897. The first author also acknowledges support under an Academic Leave funded by Sam Houston State University.

