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What Happens When the Division Algorithm
“Almost” Works

Scott T. Chapman

Abstract. Let K be any field. The division algorithm plays a key role in studying the basic
algebraic structure of K[X]. While the division algorithm implies that all the ideals of K[X]
are principal, we show that subrings ofK[X] satisfying a slightly weaker version of the division
algorithm produce ideals that while not principal, are still finitely generated. Our construction
leads to an example for each positive integer n of an integral domain with the n, but not the
n− 1, generator property.

Dedicated to the Memory of Nick Vaughan

Central in a first abstract algebra course is the notion of the division algorithm. Indeed,
a first abstraction for students studying ring theory is moving from the standard division
algorithm over Z (the integers) to a similar statement for a polynomial ring over a field.
The result below can be found in any standard abstract algebra text (such as [4] or [6]).

The Division Algorithm. Let K be a field and K[X] the polynomial ring over K. If
f (X ) and g(X ) are in K[X] with g(X ) �= 0, then there exist unique polynomials q(X )
and r(X ) in K[X] such that

f (X ) = g(X )q(X ) + r(X )

and either r(X ) = 0 or deg r(X ) < deg g(X ).

A simple application of the division algorithm shows that ideals in K[X] are principal
(i.e., generated by one element). While many introductory textbooks give an example
to show that not all ideals are principal (a popular one is I = (2,X ) in Z[X]), most
books do not go into great detail describing ideal generation problems. In this note, we
consider a natural class of subrings of K[X], namely those subrings R with K ⊆ R ⊆
K[X]. We show that if such R satisfy a weaker form of the division algorithm, then we
can not only bound the number of generators of an ideal I of R, but also offer examples
of ideals that can be generated by n, but not n− 1 elements. We describe this weaker
algorithm below.

Definition – The Almost Division Algorithm. A subring R of K[X], with K ⊆ R,
has an almost division algorithm of index m (where m ∈ N) if it satisfies the following
property. If f (X ) and g(X ) are in R with g(X ) �= 0, then there exist polynomials h(X )
and r(X ) in R such that

f (X ) = h(X )g(X ) + r(X )

where

(d1) r(X ) = 0,
(d2) deg r(X ) < deg g(X ), or
(d3) deg r(X ) = deg g(X ) + i for 1 ≤ i ≤ m.
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Amore general approach to rings and semirings satisfying an almost division algorithm
can be found in [11] and [12].

Before proceeding, we note that various arguments can be used to show that the
K-subalgebra R of K[X] is finitely generated and Noetherian (see for instance [13]).
An in-depth look at computing generating sets for a particular R can be found in [1].
Also, we deal exclusively here with the one variable case, as with multiple variables
(such as K ⊆ R ⊆ K[X,Y ]), the subring Rmay not be Noetherian. The almost division
algorithm leads directly to a proof of the following.

Theorem 1. Let R be a subring of K[X] with an almost division algorithm of index
m and I a proper ideal of R. There exist polynomials f1(X ), f2(X ), . . . , fm+1(X ) such
that

I = ( f1(X ), f2(X ), . . . , fm+1(X )).

Thus, R has the m+ 1 generator property on ideals.

Proof. Let I be a proper ideal of R. If d is the minimal degree of a polynomial in I, then
for each i with 0 ≤ i ≤ m, choose a polynomial td+i(X ) ∈ I with deg td+i(X ) = d + i.
(If I does not contain a polynomial of such degree, then set td+i(X ) = 0.) Setting

J = (td (X ), td+1(X ), . . . , td+m(X )),

we will prove that I = J. Clearly J ⊆ I. We prove the reverse containment.
Let f (X ) be an arbitrary nonzero element of I. Since S has an almost division

algorithm of index m,

f (X ) = h(X )td (X ) + r(X )

where r(X ) satisfies (d1), (d2), or (d3). Option (d2) cannot hold, as otherwise r(X ) ∈ I
contradicts the minimality of d. If (d1) holds, then f (X ) ∈ J.

Now suppose (d3) holds. Then deg r(X ) = d + i for some 1 ≤ i ≤ m. Now
deg td+i(X ) = deg r(X ) and so there is a k ∈ K with r(X ) = ktd+i(X ) + r1(X ) where
either (d1) or (d2) holds. If (d1) holds, then f (X ) = h(X )td (X ) + ktd+i(X ) ∈ J. If (d2)
holds, then r1(X ) ∈ I with d ≤ deg r1(X ) < d + i. Repeat this process on r1(X ) with
the polynomial tdeg r1(X ) and obtain the remainder term r2(X ). Since the degrees of
the remainder terms are strictly descending (deg r(X ) > deg r1(X ) > deg r2(X ) > · · ·),
this process must terminate and we have inductively constructed a finite sequence
{r0(X ) = r(X ), r1(X ), . . . , rN (X )} of remainders. Notice that f (X ) = h(X )td (X ) +∑
kntdeg rn(X )(X ) where each kn ∈ K and hence f (X ) ∈ I. Thus I ⊂ J and the proof is

complete. �

We apply Theorem 1 to a well-studied class of subrings of K[X]. We will need
the notion of a numerical semigroup to complete our work. Let N0 represent the non-
negative integers. An additive submonoid S of N0 is called a numerical monoid. Using
elementary number theory, it is easy to show that there is a finite set of positive integers
n1, . . . , nk such that if s ∈ S, then s = x1n1 + · · · + xknk where each xi is a nonnegative
integer. To represent that n1, . . . , nk is a generating set for S, we use the notation

S = 〈n1, . . . , nk〉 = {x1n1 + · · · + xknk | xi ∈ N0}.
If the generators n1, . . . , nk are relatively prime, then S is called primitive.We shall need
the following three facts concerning numerical semigroups. The proofs of all three can
be found in [14] (part (a) is Proposition 1.2, (b) is Theorem 1.7, and (c) is a by-product
of Lemma 1.1).
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Proposition 2. Let S = 〈n1, . . . , nk〉 be a numerical semigroup.
(a) S is isomorphic to a primitive numerical semigroup S′.
(b) S has a unique minimal cardinality generating set.
(c) If S is a primitive numerical semigroup, then there is a largest elementF (S) �∈ S

with the property that any s > F (S) is in S.

Due to (a), we assume that S is primitive throughout the remainder of this work.
The value F (S) is known as the Frobenius number of S and its computation remains
a matter of current mathematical research. If S = 〈a, b〉, then it is well known that
F (S) = ab− a− b (see [15]), but for more than 2 generators, no general formula is
known (see [14, Section 1.3] for more on Frobenius numbers).

Now, if K is a field and S a numerical semigroup, then set

K[X; S] = { f (X ) | f (X ) ∈ K[X] and f (X ) =
∑

σ∈S
aiX

σ },

where it is understood that the sum above is finite. The rings K[X; S] are known as
semigroup rings, and [5] is a good general reference on the subject. Under our hy-
potheses, the rings K[X; S] consist of all polynomials with exponents coming from the
numerical monoid S. We illustrate this with some examples.

Example 3. Let S = 〈3, 7, 11〉. A quick calculation shows that

S = {0, 3, 6, 7, 9, 10, 11, . . .}
and F (S) = 8. Hence, a typical element in K[X; 〈3, 7, 11〉] is of the form

f (X ) = a0 + a3X
3 + a6X

6 + a7X
7 +

k∑

i=9

aiX
i

for some k ≥ 9 with each ai in K.

Example 4. Let S = 〈2, 3〉. Thus S = {0, 2, 3, 4, 5, . . .} and a typical element of

K[X; 〈2, 3〉] is of the form f (X ) = a0 +
k∑

i=2

aiX
i for some k ≥ 2 with each ai in K.

Thus, K[X; 〈2, 3〉] consists of all polynomials from K[X] which lack an X term. A
version of Theorem 5 below specifically for K[X; 〈2, 3〉] can be found in [16].

We can generalize the last example as follows. Let n > 1 be a positive integer and set
S = 〈n, n+ 1, . . . , 2n− 1〉. Notice that S consists of 0 along with all positive integers
greater than or equal to n. Thus, a typical element in K[X; 〈n, n+ 1, . . . , 2n− 1〉] is
of the form f (X ) = a0 +

∑k

i=n aiX
i where k ≥ n and again each ai is in K.

As the last examples make clear, if S = 〈n1, . . . , nk〉 is a numerical semigroup, then
the semigroup ring K[X; S] is equivalent to the extension of K by the monomial terms
Xn1, . . . ,Xnk (i.e., K[X; S] ∼= K[Xn1, . . . ,Xnk ]).

Theorem 5. If K is a field and S a numerical semigroup, then K[X; S] has an almost
division algorithm of index F (S).

Proof. Let f (X ) and g(X ) be in K[X; S] with g(X ) �= 0; we will divide f (X ) by g(X )
and verify that either (d1), (d2), or (d3) holds. If deg f (X ) < deg g(X ), then the result
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is trivial. Hence, we assume deg f (X ) ≥ deg g(X ). By the regular division algorithm in
K[X], there exist h(X ) and r(X ) in K[X] with

f (X ) = h(X )g(X ) + r(X )

where r(X ) = 0 or deg r(X ) < deg g(X ). If h(X ) ∈ K[X; S], then r(X ) ∈ K[X; S] and
we are done. If not, then write

h(X ) =
∑

γ �∈S
aγX

γ +
∑

σ∈S
aσX

σ .

Setting h∗(X ) = ∑
γ �∈S aγXγ yields that h∗∗(X ) = h(X ) − h∗(X ) is in K[X; S]. If

r∗(X ) = h∗(X )g(X ) + r(X ), then we have

f (X ) = h(X )g(X ) + r(X )

= [h(X ) − h∗(X )]g(X ) + [h∗(X )g(X ) + r(X )]

= h∗∗(X )g(X ) + r∗(X ).

Since f (X ) − h∗∗(X )g(X ) ∈ K[X; S], it follows that so too is r∗(X ). Since deg g(X ) <

deg r∗(X ) ≤ deg g(X ) + F (S), the proof is complete. �

By a slight adjustment of h∗(X ) in the proof above, we see that the representation
(d3) in the almost division algorithm may not be unique. For instance, returning to
Example 4, if S = 〈2, 3〉, f (X ) = X3, and g(X ) = X2, then X3 = 0 · X2 + X3 and X3 =
(−1) · X2 + (X3 + X2). The next corollary follows directly from Theorems 1 and 5.

Corollary 6. If K is a field and S a numerical semigroup, then the ideals of K[X; S]
require at most F (S) + 1 generators.

A Noetherian integral domain in which the ideals can be n-generated is said to have
the n-generator property. If an integral domain D has the n-generator property for
some n ∈ N, then it has it has them-generator property for some minimal valuem ∈ N.
Dedekind domains (a very natural class of rings that are ubiquitous in algebraic num-
ber theory and algebraic geometry) are generally not principal ideal domains, but they
always have the 2-generator property (a proof of this can be found in [7, Theorem 17]).
While Corollary 6 shows that K[X; S] has the F (S) + 1 generator property, this value
may not be minimal, and in fact is not sharp for all S. Using semigroup ideals, a precise
minimal value can be found (the interested reader can construct examples for which
our bound is not sharp by using [2, Corollary 7] or [10]). Further reading on rings with
the n-generator property can be found in [3], [8], and [9].

We close by showing that the value of Corollary 6 is sharp for the numerical semi-
groups introduced in Example 4.

Proposition 7. Let K be a field, n > 1 a positive integer, and S = 〈n, n+ 1, . . . , 2n−
1〉 a numerical semigroup. The integral domain K[X; S] has the n, but not the n− 1
generator property.

Proof. SinceF (S) = n− 1, Corollary 6 implies that K[X; S] has the n-generator prop-
erty. We argue that the ideal

I = (Xn,Xn+1, . . . ,X2n−1)
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requires n generators. The argument will center around the K-vector spaceV generated
by Xn, . . . ,X2n−1. Since the elements Xn, . . . ,X2n−1 are linearly independent over K,
V has dimension n.

Suppose I = ( f1(X ), . . . , fk(X )) where each fi(X ) ∈ K[X; S] and k < n. Since I
contains no elements with nonzero constant terms, the constant terms on the fi(X )’s
are all zero. For each i = 1, . . . , k define f ′i (X ) by

fi(X ) = a1,iX
n + · · · + an,iX

2n−1 +
ri∑

j=2n

a j,1X
j = f ′i (X ) +

ri∑

j=2n

a j,1X
j

for 1 ≤ i ≤ k where each ai, j ∈ K. By assumption, for each 0 ≤ v ≤ n− 1,

Xn+v = C1,v (X ) f1(X ) + · · · +Ck,v (X ) fk(X )

where eachCj,v (X ) ∈ K[X; S]. If c j,v is the constant term for eachCj,v (X ), then a simple
degree argument yields

Xn+v = c1,v f
′
1(X ) + · · · + ck,v f

′
k(X )

for each 0 ≤ v ≤ n− 1. Thus the K-vector space generated by f ′1(X ), . . . , f
′
k(X )

contains V , which contradicts that dimV = n. �
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