The American Mathematical Monthly

What Happens When the Division Algorithm "Almost" Works

Scott T. Chapman

To cite this article: Scott T. Chapman (2018) What Happens When the Division Algorithm "Almost" Works, The American Mathematical Monthly, 125:7, 643-647, DOI: 10.1080/00029890.2018.1470414

To link to this article: https://doi.org/10.1080/00029890.2018.1470414

Published online: 03 Aug 2018.

Submit your article to this journal

Article views: 36

View Crossmark data〕

What Happens When the Division Algorithm "Almost" Works

Scott T. Chapman

Abstract

Let K be any field. The division algorithm plays a key role in studying the basic algebraic structure of $K[X]$. While the division algorithm implies that all the ideals of $K[X]$ are principal, we show that subrings of $K[X]$ satisfying a slightly weaker version of the division algorithm produce ideals that while not principal, are still finitely generated. Our construction leads to an example for each positive integer n of an integral domain with the n, but not the $n-1$, generator property.

Dedicated to the Memory of Nick Vaughan

Central in a first abstract algebra course is the notion of the division algorithm. Indeed, a first abstraction for students studying ring theory is moving from the standard division algorithm over \mathbb{Z} (the integers) to a similar statement for a polynomial ring over a field. The result below can be found in any standard abstract algebra text (such as [4] or [6]).

The Division Algorithm. Let K be a field and $K[X]$ the polynomial ring over K. If $f(X)$ and $g(X)$ are in $K[X]$ with $g(X) \neq 0$, then there exist unique polynomials $q(X)$ and $r(X)$ in $K[X]$ such that

$$
f(X)=g(X) q(X)+r(X)
$$

and either $r(X)=0$ or $\operatorname{deg} r(X)<\operatorname{deg} g(X)$.
A simple application of the division algorithm shows that ideals in $K[X]$ are principal (i.e., generated by one element). While many introductory textbooks give an example to show that not all ideals are principal (a popular one is $I=(2, X)$ in $\mathbb{Z}[X]$), most books do not go into great detail describing ideal generation problems. In this note, we consider a natural class of subrings of $K[X]$, namely those subrings R with $K \subseteq R \subseteq$ $K[X]$. We show that if such R satisfy a weaker form of the division algorithm, then we can not only bound the number of generators of an ideal I of R, but also offer examples of ideals that can be generated by n, but not $n-1$ elements. We describe this weaker algorithm below.

Definition - The Almost Division Algorithm. A subring R of $K[X]$, with $K \subseteq R$, has an almost division algorithm of index m (where $m \in \mathbb{N}$) if it satisfies the following property. If $f(X)$ and $g(X)$ are in R with $g(X) \neq 0$, then there exist polynomials $h(X)$ and $r(X)$ in R such that

$$
f(X)=h(X) g(X)+r(X)
$$

where
(d1) $r(X)=0$,
(d2) $\operatorname{deg} r(X)<\operatorname{deg} g(X)$, or
(d3) $\operatorname{deg} r(X)=\operatorname{deg} g(X)+i$ for $1 \leq i \leq m$.

[^0]A more general approach to rings and semirings satisfying an almost division algorithm can be found in [11] and [12].

Before proceeding, we note that various arguments can be used to show that the K-subalgebra R of $K[X]$ is finitely generated and Noetherian (see for instance [13]). An in-depth look at computing generating sets for a particular R can be found in [1]. Also, we deal exclusively here with the one variable case, as with multiple variables (such as $K \subseteq R \subseteq K[X, Y]$), the subring R may not be Noetherian. The almost division algorithm leads directly to a proof of the following.

Theorem 1. Let R be a subring of $K[X]$ with an almost division algorithm of index m and I a proper ideal of R. There exist polynomials $f_{1}(X), f_{2}(X), \ldots, f_{m+1}(X)$ such that

$$
I=\left(f_{1}(X), f_{2}(X), \ldots, f_{m+1}(X)\right)
$$

Thus, R has the $m+1$ generator property on ideals.
Proof. Let I be a proper ideal of R. If d is the minimal degree of a polynomial in I, then for each i with $0 \leq i \leq m$, choose a polynomial $t_{d+i}(X) \in I$ with $\operatorname{deg} t_{d+i}(X)=d+i$. (If I does not contain a polynomial of such degree, then set $t_{d+i}(X)=0$.) Setting

$$
J=\left(t_{d}(X), t_{d+1}(X), \ldots, t_{d+m}(X)\right),
$$

we will prove that $I=J$. Clearly $J \subseteq I$. We prove the reverse containment.
Let $f(X)$ be an arbitrary nonzero element of I. Since S has an almost division algorithm of index m,

$$
f(X)=h(X) t_{d}(X)+r(X)
$$

where $r(X)$ satisfies (d1), (d2), or (d3). Option (d2) cannot hold, as otherwise $r(X) \in I$ contradicts the minimality of d. If (d1) holds, then $f(X) \in J$.

Now suppose (d3) holds. Then $\operatorname{deg} r(X)=d+i$ for some $1 \leq i \leq m$. Now $\operatorname{deg} t_{d+i}(X)=\operatorname{deg} r(X)$ and so there is a $k \in K$ with $r(X)=k t_{d+i}(X)+r_{1}(X)$ where either (d1) or (d2) holds. If (d1) holds, then $f(X)=h(X) t_{d}(X)+k t_{d+i}(X) \in J$. If (d2) holds, then $r_{1}(X) \in I$ with $d \leq \operatorname{deg} r_{1}(X)<d+i$. Repeat this process on $r_{1}(X)$ with the polynomial $t_{\operatorname{deg}} r_{1}(X)$ and obtain the remainder term $r_{2}(X)$. Since the degrees of the remainder terms are strictly descending $\left(\operatorname{deg} r(X)>\operatorname{deg} r_{1}(X)>\operatorname{deg} r_{2}(X)>\cdots\right)$, this process must terminate and we have inductively constructed a finite sequence $\left\{r_{0}(X)=r(X), r_{1}(X), \ldots, r_{N}(X)\right\}$ of remainders. Notice that $f(X)=h(X) t_{d}(X)+$ $\sum k_{n} t_{\operatorname{deg}} r_{n}(X)(X)$ where each $k_{n} \in K$ and hence $f(X) \in I$. Thus $I \subset J$ and the proof is complete.

We apply Theorem 1 to a well-studied class of subrings of $K[X]$. We will need the notion of a numerical semigroup to complete our work. Let \mathbb{N}_{0} represent the nonnegative integers. An additive submonoid S of \mathbb{N}_{0} is called a numerical monoid. Using elementary number theory, it is easy to show that there is a finite set of positive integers n_{1}, \ldots, n_{k} such that if $s \in S$, then $s=x_{1} n_{1}+\cdots+x_{k} n_{k}$ where each x_{i} is a nonnegative integer. To represent that n_{1}, \ldots, n_{k} is a generating set for S, we use the notation

$$
S=\left\langle n_{1}, \ldots, n_{k}\right\rangle=\left\{x_{1} n_{1}+\cdots+x_{k} n_{k} \mid x_{i} \in \mathbb{N}_{0}\right\} .
$$

If the generators n_{1}, \ldots, n_{k} are relatively prime, then S is called primitive. We shall need the following three facts concerning numerical semigroups. The proofs of all three can be found in [14] (part (a) is Proposition 1.2, (b) is Theorem 1.7, and (c) is a by-product of Lemma 1.1).

Proposition 2. Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ be a numerical semigroup.
(a) S is isomorphic to a primitive numerical semigroup S^{\prime}.
(b) S has a unique minimal cardinality generating set.
(c) If S is a primitive numerical semigroup, then there is a largest element $\mathcal{F}(S) \notin S$ with the property that any $s>\mathcal{F}(S)$ is in S.

Due to (a), we assume that S is primitive throughout the remainder of this work. The value $\mathcal{F}(S)$ is known as the Frobenius number of S and its computation remains a matter of current mathematical research. If $S=\langle a, b\rangle$, then it is well known that $\mathcal{F}(S)=a b-a-b$ (see [15]), but for more than 2 generators, no general formula is known (see [14, Section 1.3] for more on Frobenius numbers).

Now, if K is a field and S a numerical semigroup, then set

$$
K[X ; S]=\left\{f(X) \mid f(X) \in K[X] \text { and } f(X)=\sum_{\sigma \in S} a_{i} X^{\sigma}\right\},
$$

where it is understood that the sum above is finite. The rings $K[X ; S]$ are known as semigroup rings, and [5] is a good general reference on the subject. Under our hypotheses, the rings $K[X ; S]$ consist of all polynomials with exponents coming from the numerical monoid S. We illustrate this with some examples.

Example 3. Let $S=\langle 3,7,11\rangle$. A quick calculation shows that

$$
S=\{0,3,6,7,9,10,11, \ldots\}
$$

and $\mathcal{F}(S)=8$. Hence, a typical element in $K[X ;\langle 3,7,11\rangle]$ is of the form

$$
f(X)=a_{0}+a_{3} X^{3}+a_{6} X^{6}+a_{7} X^{7}+\sum_{i=9}^{k} a_{i} X^{i}
$$

for some $k \geq 9$ with each a_{i} in K.
Example 4. Let $S=\langle 2,3\rangle$. Thus $S=\{0,2,3,4,5, \ldots\}$ and a typical element of $K[X ;\langle 2,3\rangle]$ is of the form $f(X)=a_{0}+\sum_{i=2}^{k} a_{i} X^{i}$ for some $k \geq 2$ with each a_{i} in K. Thus, $K[X ;\langle 2,3\rangle]$ consists of all polynomials from $K[X]$ which lack an X term. A version of Theorem 5 below specifically for $K[X ;\langle 2,3\rangle]$ can be found in [16].

We can generalize the last example as follows. Let $n>1$ be a positive integer and set $S=\langle n, n+1, \ldots, 2 n-1\rangle$. Notice that S consists of 0 along with all positive integers greater than or equal to n. Thus, a typical element in $K[X ;\langle n, n+1, \ldots, 2 n-1\rangle]$ is of the form $f(X)=a_{0}+\sum_{i=n}^{k} a_{i} X^{i}$ where $k \geq n$ and again each a_{i} is in K.

As the last examples make clear, if $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ is a numerical semigroup, then the semigroup ring $K[X ; S]$ is equivalent to the extension of K by the monomial terms $X^{n_{1}}, \ldots, X^{n_{k}}$ (i.e., $K[X ; S] \cong K\left[X^{n_{1}}, \ldots, X^{n_{k}}\right]$).

Theorem 5. If K is a field and S a numerical semigroup, then $K[X ; S]$ has an almost division algorithm of index $\mathcal{F}(S)$.

Proof. Let $f(X)$ and $g(X)$ be in $K[X ; S]$ with $g(X) \neq 0$; we will divide $f(X)$ by $g(X)$ and verify that either $(\mathrm{d} 1),(\mathrm{d} 2)$, or $(\mathrm{d} 3)$ holds. If $\operatorname{deg} f(X)<\operatorname{deg} g(X)$, then the result
is trivial. Hence, we assume $\operatorname{deg} f(X) \geq \operatorname{deg} g(X)$. By the regular division algorithm in $K[X]$, there exist $h(X)$ and $r(X)$ in $K[X]$ with

$$
f(X)=h(X) g(X)+r(X)
$$

where $r(X)=0$ or $\operatorname{deg} r(X)<\operatorname{deg} g(X)$. If $h(X) \in K[X ; S]$, then $r(X) \in K[X ; S]$ and we are done. If not, then write

$$
h(X)=\sum_{\gamma \notin S} a_{\gamma} X^{\gamma}+\sum_{\sigma \in S} a_{\sigma} X^{\sigma} .
$$

Setting $h^{*}(X)=\sum_{\gamma \notin S} a_{\gamma} X^{\gamma}$ yields that $h^{* *}(X)=h(X)-h^{*}(X)$ is in $K[X ; S]$. If $r^{*}(X)=h^{*}(X) g(X)+r(X)$, then we have

$$
\begin{aligned}
f(X) & =h(X) g(X)+r(X) \\
& =\left[h(X)-h^{*}(X)\right] g(X)+\left[h^{*}(X) g(X)+r(X)\right] \\
& =h^{* *}(X) g(X)+r^{*}(X) .
\end{aligned}
$$

Since $f(X)-h^{* *}(X) g(X) \in K[X ; S]$, it follows that so too is $r^{*}(X)$. Since $\operatorname{deg} g(X)<$ $\operatorname{deg} r^{*}(X) \leq \operatorname{deg} g(X)+\mathcal{F}(S)$, the proof is complete.

By a slight adjustment of $h^{*}(X)$ in the proof above, we see that the representation (d3) in the almost division algorithm may not be unique. For instance, returning to Example 4, if $S=\langle 2,3\rangle, f(X)=X^{3}$, and $g(X)=X^{2}$, then $X^{3}=0 \cdot X^{2}+X^{3}$ and $X^{3}=$ $(-1) \cdot X^{2}+\left(X^{3}+X^{2}\right)$. The next corollary follows directly from Theorems 1 and 5 .

Corollary 6. If K is a field and S a numerical semigroup, then the ideals of $K[X ; S]$ require at most $\mathcal{F}(S)+1$ generators.

A Noetherian integral domain in which the ideals can be n-generated is said to have the n-generator property. If an integral domain D has the n-generator property for some $n \in \mathbb{N}$, then it has it has the m-generator property for some minimal value $m \in \mathbb{N}$. Dedekind domains (a very natural class of rings that are ubiquitous in algebraic number theory and algebraic geometry) are generally not principal ideal domains, but they always have the 2-generator property (a proof of this can be found in [7, Theorem 17]). While Corollary 6 shows that $K[X ; S]$ has the $\mathcal{F}(S)+1$ generator property, this value may not be minimal, and in fact is not sharp for all S. Using semigroup ideals, a precise minimal value can be found (the interested reader can construct examples for which our bound is not sharp by using [2, Corollary 7] or [10]). Further reading on rings with the n-generator property can be found in [3], [8], and [9].

We close by showing that the value of Corollary 6 is sharp for the numerical semigroups introduced in Example 4.

Proposition 7. Let K be a field, $n>1$ a positive integer, and $S=\langle n, n+1, \ldots, 2 n-$ 1) a numerical semigroup. The integral domain $K[X ; S]$ has the n, but not the $n-1$ generator property.

Proof. Since $\mathcal{F}(S)=n-1$, Corollary 6 implies that $K[X ; S]$ has the n-generator property. We argue that the ideal

$$
I=\left(X^{n}, X^{n+1}, \ldots, X^{2 n-1}\right)
$$

requires n generators. The argument will center around the K-vector space V generated by $X^{n}, \ldots, X^{2 n-1}$. Since the elements $X^{n}, \ldots, X^{2 n-1}$ are linearly independent over K, V has dimension n.

Suppose $I=\left(f_{1}(X), \ldots, f_{k}(X)\right)$ where each $f_{i}(X) \in K[X ; S]$ and $k<n$. Since I contains no elements with nonzero constant terms, the constant terms on the $f_{i}(X)$'s are all zero. For each $i=1, \ldots, k$ define $f_{i}^{\prime}(X)$ by

$$
f_{i}(X)=a_{1, i} X^{n}+\cdots+a_{n, i} X^{2 n-1}+\sum_{j=2 n}^{r_{i}} a_{j, 1} X^{j}=f_{i}^{\prime}(X)+\sum_{j=2 n}^{r_{i}} a_{j, 1} X^{j}
$$

for $1 \leq i \leq k$ where each $a_{i, j} \in K$. By assumption, for each $0 \leq v \leq n-1$,

$$
X^{n+v}=C_{1, v}(X) f_{1}(X)+\cdots+C_{k, v}(X) f_{k}(X)
$$

where each $C_{j, v}(X) \in K[X ; S]$. If $c_{j, v}$ is the constant term for each $C_{j, v}(X)$, then a simple degree argument yields

$$
X^{n+v}=c_{1, v} f_{1}^{\prime}(X)+\cdots+c_{k, v} f_{k}^{\prime}(X)
$$

for each $0 \leq v \leq n-1$. Thus the K-vector space generated by $f_{1}^{\prime}(X), \ldots, f_{k}^{\prime}(X)$ contains V, which contradicts that $\operatorname{dim} V=n$.

ACKNOWLEDGMENTS. The author would like to thank Susan Colley, Vadim Ponomarenko, and two unknown referees for comments that greatly improved the content and exposition of this note.

REFERENCES

[1] Assi, A., García-Sánchez, P. A., Micale, V. (2017). Bases of subalgebras of $K[[x]]$ and $K[x]$. J. Symbolic Comput. 79: 4-22.
[2] Chapman, S. T., Vaughan, N. (1991). A theorem on generating ideals in certain semigroup rings. Boll. Un. Mat. Ital. A (7). 5(1): 41-49.
[3] Clark, P. (2016). A note on rings of finite rank. arxiv.org/pdf/1605.01305.pdf
[4] Gallian, J. (2016). Contemporary Abstract Algebra, 9th ed. Boston: Cengage Learning.
[5] Gilmer, R. (1984). Commutative Semigroup Rings. Chicago: Univ. of Chicago Press.
[6] Hungerford, T. (2013). Abstract Algebra: An Introduction, 3rd ed. Boston: Cengage Learning.
[7] Marcus, D. (1977). Number Fields. New York: Springer.
[8] Matson, A. (2009). Rings of finite rank and finitely generated ideals. J. Commut. Algebra. 1(3): 537-546.
[9] Matsuda, R. (1979). Torsion free abelian semigroup rings, V. Bull. Fac. Sci. Ibaraki Univ. Ser. A. 11: 1-37.
[10] Matsuda, R. (1984). n-Generator property of a polynomial ring. Bull. Fac. Sci. Ibaraki Univ. Ser. A. 16: 17-23.
[11] Mehdi-Nezhad, E., Rahimi, A., (2009). Semirings with an almost division algorithm. Libertas Math. 29: 129-137.
[12] Rahimi, A. (1993). Rings with an almost division algorithm. Libertas Math. 13: 41-46.
[13] Robbiano, L., Sweedler, M. (1990). Subalgebra bases. In: Bruns, W. and Simis, A., eds. Commutative Algebra (Salvador 1988). New York: Springer, pp. 61-87.
[14] Rosales, J. C., García-Sánchez, P. A. (2009). Numerical Semigroups. Developments in Mathematics, 20. New York: Springer.
[15] Sylvester, J. (1884). Mathematical questions with their solutions. Educational Times. 41: 171-178.
[16] Vaughan, N. (1981). An integral domain with an almost division algorithm. J. Nat. Sci. Math. 21(1): 81-83.

Department of Mathematics and Statistics, Sam Houston State University, Box 2206, Huntsville, TX 77341 scott.chapman@shsu.edu

[^0]: doi.org/10.1080/00029890.2018.1470414
 MSC: Primary 13B25

