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Motivation

Let K = Q(α) be a finite extension of the rationals.

Let OK = {α ∈ K | f (α) = 0 for some monic f (X ) ∈ Z[X ]} be the ring
of integers of K .

Let I(OK ) represent the set of nonzero ideals of OK and P(OK ) its
associated subset of nonzero principal ideals.

Fundamental Question

If α ∈ OK , then how does α factor into irreducible elements of OK? When
do the elements of OK have unique factorization like in Z?

Answer: The factorizations of α depend on the factorization of the ideal
(α) into the prime ideals of I(OK ). OK is a unique factorization domain
exactly when I(OK ) = P(OK ).
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More Motivation

The usual example used in an undergraduate Abstract Algebra Textbook
to demonstrate that the Fundamental Theorem of Arithmetic can fail in
an integral domain is:

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5) (1)

in the algebraic number ring Z[
√
−5].

The actual argument to complete this observation involves showing two
things:

(i) 2, 3, 1 +
√
−5 and 1−

√
−5 are all irreducible, and

(ii) 2 (resp. 3) is neither an associate of (1 +
√
−5) nor of (1−

√
−5)

(this is clear once ±1 are established as the only units of Z[
√
−5]).
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Motivation

Most books fail to point out to the readers that while Z[
√
−5] is not a

UFD, it does have a rather nice factorization property.

Specifically, if α1, . . . αn, β1, . . . , βm are irreducible elements of Z[
√
−5]

with
α1 · · ·αn = β1 · · ·βm, (2)

then n = m.

In general, an integral domain with this property is known as a
half-factorial domain (HFD).
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Goals

Using the ideal class group (and, more generally, the class number), one
can construct a very simple proof of this fact for Z[

√
−5].

Carlitz first illustrated this argument in PAMS 11(1960), 391-392.

His proof (while short) leads to a deeper understanding of how elements
factor in an algebraic ring of integers.
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Goals

The purpose of this talk is to develop this understanding by using a
structure, known as a block monoid, that is associated to the class group.

In fact, block monoids have greater utility and we shall show that they can
be used in a similar line of analysis in more general classes of integral
domains, such as Dedekind domains and Krull domains.

Our work will involve a close study of the combinatorial properties of block
monoids and lead to an examination of an actively researched concept
from Additive Number Theory known as Davenport’s constant.
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Definitions

Proposition

Let I be an ideal of OK and I(OK ) and P(OK ) be as above.

1 OK is a Dedekind domain. Moreover, there exists elements α and β
in OK such that I = (α, β).

2 The factor monoid C(OK ) = I(OK )/P(OK ) forms a finite abelian
group.

3 Let [I ] represent the image of the ideal I in C(OK ). Then, for each
g ∈ C(OK ) there exists a prime ideal P of OK such that [P] = g .
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A Classic Theorem

The group C(OK ) is known as the class group of OK and its order
|C(OK )| is the class number of OK .

The class number gives a classic answer to the question of when a ring of
algebraic integers admits unique factorization.

Theorem

The ring of integers OK in an algebraic number field K is a unique
factorization domain if and only if the class number of OK is 1.

In fact, the size of the class group of OK was generally assumed to be a
measure of how far a ring of integers was from being a UFD.
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The Connection Between Ideals and
Factorizations

Proposition

Let D be a Dedekind domain and x ∈ D a nonzero nonunit. Suppose in D
that

(x) = P1 · · ·Pk

where k ≥ 1 and the P1, · · ·Pk are not necessarily distinct prime ideals of
D. Then

1 In C(D), [P1] + · · ·+ [Pk ] = 0.

2 The element x is prime in D if and only if k = 1.

3 The element x is irreducible in D if and only if for every nonempty
proper subset T ⊂ {1, . . . , k},

∑
i∈T [Pi ] 6= 0.
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Proof of (3)

Proof.

We prove (3) by contrapositive. (⇒) Suppose for some proper subset T
that

∑
i∈T [Pi ] = 0. Then

∏
i∈T Pi = (y) for some nonzero nonunit

y ∈ D. By (1) we have [P1] + · · ·+ [Pk ] = 0, so
∑

i∈T [Pi ] = 0 also.
Thus,

∏
i∈T Pi = (z) for some nonzero nonunit z ∈ D. Hence

(x) = (y)(z) implies that x = uyz where u is a unit of D and so x is
reducible. (⇐) Suppose that x is reducible in D, i.e. x = yz for nonunits
y and z in D. By the Fundamental Theorem, there is a proper nonempty
subset T ⊂ {1, . . . , k} such that (y) =

∏
i∈T Pi . By (1), in C(D),∑

i∈T [Pi ] = 0.
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An Application

What happened in OK = Z[
√
−5]?

The only units of OK are ±1 and it is well known that the class number of
OK is 2 (hence C(OK ) ∼= Z2).

Let’s reconsider
6 = 2 · 3 = (1 +

√
−5)(1−

√
−5) (3)

in Z[
√
−5].

The prime ideal decompositions of (2) and (3) in Z[
√
−5] are

(2) = (2, 1 +
√
−5)2 and (3) = (3, 1 +

√
−5)(3, 1−

√
−5).

Scott Chapman () January 25, 2021 12 / 31



An Application

What happened in OK = Z[
√
−5]?

The only units of OK are ±1 and it is well known that the class number of
OK is 2 (hence C(OK ) ∼= Z2).

Let’s reconsider
6 = 2 · 3 = (1 +

√
−5)(1−

√
−5) (3)

in Z[
√
−5].

The prime ideal decompositions of (2) and (3) in Z[
√
−5] are

(2) = (2, 1 +
√
−5)2 and (3) = (3, 1 +

√
−5)(3, 1−

√
−5).

Scott Chapman () January 25, 2021 12 / 31



An Application

What happened in OK = Z[
√
−5]?

The only units of OK are ±1 and it is well known that the class number of
OK is 2 (hence C(OK ) ∼= Z2).

Let’s reconsider
6 = 2 · 3 = (1 +

√
−5)(1−

√
−5) (3)

in Z[
√
−5].

The prime ideal decompositions of (2) and (3) in Z[
√
−5] are

(2) = (2, 1 +
√
−5)2 and (3) = (3, 1 +

√
−5)(3, 1−

√
−5).

Scott Chapman () January 25, 2021 12 / 31



An Application

What happened in OK = Z[
√
−5]?

The only units of OK are ±1 and it is well known that the class number of
OK is 2 (hence C(OK ) ∼= Z2).

Let’s reconsider
6 = 2 · 3 = (1 +

√
−5)(1−

√
−5) (3)

in Z[
√
−5].

The prime ideal decompositions of (2) and (3) in Z[
√
−5] are

(2) = (2, 1 +
√
−5)2 and (3) = (3, 1 +

√
−5)(3, 1−

√
−5).

Scott Chapman () January 25, 2021 12 / 31



An Application

Hence,

(6) = (2)(3) = (2, 1 +
√
−5)2(3, 1 +

√
−5)(3, 1−

√
−5). (4)

The second factorization in Eq. 3 is obtained by rearranging the product
in Eq. 4,

(6) = (2)(3) = (2, 1 +
√
−5)2(3, 1 +

√
−5)(3, 1−

√
−5)

= (2, 1+
√
−5)(3, 1+

√
−5)(2, 1+

√
−5)(3, 1−

√
−5) = (1+

√
−5)(1−

√
−5).

Moreover, since the class group of Z[
√
−5] requires a product of two

nonprincipal prime ideals to obtain a principal ideal, these are the only two
factorizations of 6 in Z[

√
−5] up to associates.
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Block Monoids

Let G be an abelian group. If A ⊆ G , then let 〈A〉 represent the subgroup
generated by A.

Further, let F(G ) represent the free abelian monoid on G . We write the
elements of F(G ) as C =

∏
g∈G g vg (C) where vg (C ) is a nonnegative

integer.

Definition

Let G be an abelian group. The set

B(G ) =

{
C

∣∣∣∣ C =
∏
g∈G

g vg (C) with
∑
g∈G

vg (C )g = 0

}

forms a submonoid of F(G ) known as the block monoid of G .
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Block Moniods

Definition

If S is a nonempty subset of G , then the set

B(G , S) =

{
C

∣∣∣∣ C =
∏
g∈G

g vg (C) with

∑
g∈G

vg (C )g = 0 and vg (C ) = 0 if g 6∈ S

}

is a submonoid of B(G ) known as the block monoid of G restricted to S .

We call the identity of B(G , S), E =
∏

g∈G g0, the empty block.

A block B divides a block C , denoted B | C if there is a block T such that
C = BT .
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Block Monoids

A block B 6= E is irreducible if B = CT for C , T in B(G , S) implies that
either C = E or T = E .

A block B 6= E is prime if whenever B | CT then either B | C or B | T .

As with the usual theory of factorization in an integral domain, a prime
block B is irreducible, but not conversely.

For the block C =
∏

g∈G g vg (C), we set |C |=
∑

g∈G vg (C ) to be the size
of C .
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Basic Facts About Block Monoids

We compile a few facts about block monoids.

Proposition

Let G be an abelian group and S a nonempty subset of G .

1 The block B =
∏

g∈S g
vg (B) 6= E is irreducible in B(G ,S) if and only

if for each nonempty subset T of S we have
∑

g∈T v ′g (B)g 6= 0 for
any integers v ′g (B) with 0 ≤ v ′g (B) ≤ vg (B) where at least one
v ′g (B) 6= 0 and at least one v ′g (B) < vg (B).

2 If B 6= E in B(G ,S), then B can be written as a product of
irreducible blocks in B(G , S).

3 If 0 ∈ S , then the block 01 is prime in B(G , S).

4 If G is finite, then B(G ,S) contains finitely many irreducible blocks.
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An Example

Example

Let G = Z4. Here

B(Z4) = {0 x01
x12

x23
x3 | each xi ≥ 0 and x1 + 2x2 + 3x3 ≡ 0 (mod 4)}.

Notice that the non-prime irreducible blocks of B(Z4) are as follows:

1
4
, 2

2
, 3

4
, 1

2
2
1
, 1

1
3
1
, and 2

1
3
2
.

In this monoid it is easy to produce factorizations of blocks into irreducible
blocks which differ in length. For instance

B = (1
4
)(3

4
) = (1

1
3
1
)4

is a factorization of B into 2 and 4 irreducible blocks respectfully.
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Factorial vs. Half-Factorial

Proposition

Let G be an abelian group. The following statements are equivalent.

1 B(G ) is factorial.

2 B(G ) is half-factorial.

3 |G |≤ 2.

Proof.

(2) ⇒ (3) Suppose B(G ) is half-factorial and that |G |> 3. Then G has
two distinct nonzero elements g1 and g2 with g3 = g1 + g2 6= 0 and
g3 6= g1, g2. The blocks A1 = (−g3)1g1

1 g
1
2 , A2 = g1

3 (−g1)1(−g2)1,
B1 = g1

1 (−g1)1, B2 = g1
2 (−g2)1 and B3 = g1

3 (−g3)1 are all irreducibles of
B(G ). But A1A2 = B1B2B3, so B(G ) is not half factorial, a contradiction.

Hence |G |≤ 3. If |G |= 3, then G ∼= Z3. If A = 1
3
, B = 2

3
and C = 1

1
2
1
,

then AB = C 3 and B(Z3) is not half-factorial. Hence, we conclude that
|G |≤ 2.
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A Little Additive Number Theory

Definition

Let G be an abelian group. The Davenport constant of G is defined as

D(G ) = sup{ |B| | B is an irreducible element of B(G )}.

If S is a nonempty subset of G , then

D(G ,S) = sup{ |B| | B is an irreducible element of B(G ,S)}

is known as the Davenport constant of G relative to S .

No closed formula for the computation of the Davenport constant is
known.
Davenport’s constant arises in several unexpected areas. Alford, Granville
and Pomerance used the bound D(G ) ≤ exp(G )(1 + log(|G |/exp(G )) to
prove there are infinitely many Carmichael numbers.
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A Little Additive Number Theory

If G = Zn1 ⊕ · · · ⊕ Znk is a finite abelian group with ni | ni+1 for each
1 ≤ i < k, then set

M(G ) = [
k∑

i+1

(ni − 1)] + 1.

Proposition

Let G be an abelian group.

1 If |G |=∞, then D(G ) =∞.

2 If |G |<∞, then M(G ) ≤ D(G ) ≤ |G |.
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Davenport Facts

It is possible for the upper inequality in Proposition 9 (2) to be strict.
Erdős conjectured in the mid-sixties that D(G ) = M(G ). It was not until
1969 that this conjecture was disproved.
The group of smallest order that is a counterexample is

G1 = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z6.

If G is of rank less than or equal to 2, then D(G ) = M(G ).
It is unknown whether there is a counterexample of rank 3, and this, in
fact, is an active area of research.
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A Little More Terminology

Let M be a commutative cancellative monoid in which each nonunit can
be written as product of irreducible elements (such a monoid is called
atomic).

Let A(M) represent the set of irreducible elements of M and M× its set of
units.
For x ∈ M\M×, set

L(x) = {n | n ∈ N and there exist x1, . . . , xn ∈ A(M) with x = x1 · · · xn}.

We will refer to L(x) as the set of lengths of x in M.
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A Little More Terminology

We can extend L(x) to a global descriptor by setting

L(M) = {L(x) | x ∈ M\M×}.

We will refer to L(M) as the set of lengths of M.

There is another popular invariant which describes the variance in length
of the factorizations of an element.

For x ∈ M\M× set

L(x) = sup{n | there are x1, . . . , xn ∈ A(M) such that x = x1 · · · xn}

and

l(x) = inf{n | there are x1, . . . , xn ∈ A(M) such that x = x1 · · · xn}.
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A Little More Terminology

The elasticity of x is defined as

ρ(x) =
L(x)

l(x)
.

We can again extend this definition to all of M by setting

ρ(M) = sup{ρ(x) | x ∈ M\M×}

and call ρ(M) the elasticity of M.
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Questions

Obvious Questions:

(1) Which rings of algebraic integers OK are half-factorial?

(2) What is the elasticity of a given ring OK of integers?

HARDER QUESTIONS:

(3) What Dedekind domains are half-factorial?

(4) What is the elasticity of a given Dedekind domain?
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An Example

Example

To illustrate the above ideas, we can compute the sets of length for the
block monoid B(Z3).

If B = 0
x11

x22
x3 is in B(G ), then x2 + 2x3 ≡ 0 (mod 3), so x2 ≡ x3

(mod 3).

Write x2 = 3q2 + r and x3 = 3q3 + r , where 0 ≤ r < 3.

A calculation involving the irreducible blocks yields

L(B) = {x1 + q2 + q3 + r + k | 0 ≤ k ≤ min{q2, q3}}

and so ρ(B) = 1 + min{q2, q3}/(x1 + q2 + q3 + r).

This formula is maximized when q2 = q3 and x1 = r = 0, so that
ρ(B(Z3)) = 3/2.
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How To Compute Elasticities of Dededkind
Domains

Geroldinger’s Theorem

Let D be a Dedekind domain with divisor class group G = C(D), D∗ the
multiplicative monoid of D and S be the set of divisor classes of C(D)
containing prime ideals. Suppose further that for x ∈ D∗, we have
(x) = P1 · · ·Pk for not necessary distinct prime ideals P1, . . . ,Pk of D.
The function

ϕ : D∗ → B(G , S)

defined by
ϕ(x) = [P1] · · · [Pk ]

is a well-defined monoid homomorphism that is surjective and preserves
lengths of factorizations into irreducibles (i.e., L(x) = L(ϕ(x)) for each
x ∈ D∗). Hence

L(D) = L(B(G ,S)).
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Implications of Geroldinger’s Theorem

Geroldinger’s Theorem can be extended to include the more general class
of Krull domains.

When D = OK is the ring of integers of a finite extension K of the
rationals, we earlier established that S = G , so Geroldinger’s Theorem
establishes a correspondence between OK and the full block monoid B(G )
over the class group. The following well-known theorem of Carlitz now
follows as a corollary to Geroldinger’s Theorem.

Carlitz’s Theorem

Let OK be the ring of integers in a finite extension of the rationals. Then
OK is half-factorial if and only if the class number of OK is less than or
equal to 2. Equivalently, OK is half-factorial if and only if |C(OK )|≤ 2.
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On Elasticity

Proposition

Let D be a Dedekind domain with class group G and S defined as above.
Assume further that | G |<∞ and G 6= {0}.

1 If S 6= {0}, then ρ(D) ≤ D(G ,S)
2 .

2 If G = S , then ρ(D) = D(G)
2 . Moreover, in this case there is an

x ∈ D∗ with ρ(x) = ρ(D).

Sketch of Proof: By Geroldinger’s Theorem, we can pass to B(G , S).
If B ∈ B(G , S), then write it as B = g1 · · · gn.
The shortest factorization of B is greater than n/D(G ,S) and the longest
less than n/2.

Hence, ρ(B(G ,S)) ≤ n/2
n/D(G ,S) = D(G ,S)

2 .
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If B ∈ B(G , S), then write it as B = g1 · · · gn.
The shortest factorization of B is greater than n/D(G ,S) and the longest
less than n/2.

Hence, ρ(B(G ,S)) ≤ n/2
n/D(G ,S) = D(G ,S)

2 .
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Valenza’s Theorem

The last result leads to an easy proof of a well-known extension of Carlitz’s
Theorem by Valenza.

Valenza’s Theorem

Let OK be the ring of integers in a finite extension of the rationals. Then

ρ(OK ) =
D(C(OK ))

2
.
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