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Introduction

What is factorization theory?

A commutative cancellative monoid M with set of irreducible elements (or
atoms) A(M) is called atomic if for each nonunit x ∈ M there are
x1, . . . , xk ∈ A(M) such that x = x1 · · · xk . For such an x , set

L(x) = {n ∈ N | there exists atoms x1, . . . , xk with x = x1 · · · xk}. (1)

The set L(x) is known as the set of lengths of x ∈ M, and its study over
the past 60 years has been the principal focus of non-unique factorization
theory.

In particular, much of this work has centered on combinatorial
constants related to L(x).
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Introduction

For instance, if M is the multiplicative monoid of an integral domain R
then set

L(x) = maxL(x), `(x) = minL(x), ρ(x) =
L(x)

`(x)
,

and ρ(M) = inf{ρ(x) | x ∈ M}.

The constant ρ(x) is known as the elasticity of x in M and the constant
ρ(M) as the elasticity of M.

Further set

L(x) = lim
n→∞

L(xn)

n
and `(x) = lim

n→∞

`(xn)

n
. (2)
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Introduction

Anderson and Pruis show in PAMS 113(1991) that

(i) both the limits L(x) and `(x) exist (although L(x) may be infinite);

(ii) if α and β ∈ [0,∞] with 0 ≤ α ≤ 1 ≤ β ≤ ∞, then there is an
integral domain R and an irreducible x ∈ R with `(x) = α and
L(x) = β.

The above constants are rather “coarse” in the sense that they merely
describe the extreme values in L(x).

L(x) = {n1, n2, . . . , nk−1, nk}
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Introduction

Definition

Let M be a commutative cancellative atomic BF-monoid with set of units
M×. Define a function L∆ : M → N0 via

L∆(x) = maxL(x)−minL(x)

where we define L∆(x) = 0 if x ∈ M×. We define the length kernel of M,
denoted MLK , as the kernel of L∆ and the length ideal of M, denoted
MLI , as M \MLK . For x ∈ MLI set

LD(x) =
|L(x)|−1

L∆(x)
,

which we call the length density of x .
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Introduction

Definition

Moreover, set
LD(M) = inf{LD(x) | x ∈ MLI},

which we call the length density of M. If there is an x ∈ MLI such that
LD(M) = LD(x), then we say that the length density of M is accepted.
Set

LD(x) = lim
n→∞

LD(xn)

to be the asymptotic length density of x , provided this limit exists.
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Basic Ideas and Bounds on the Length Density

We open by considering the largest value that LD(x) can attain.

Proposition

Let M be a commutative cancellative atomic monoid and x ∈ MLI . The
following statements are equivalent.

1 LD(x) = 1.

2 L(x) is an interval.

3 ∆(x) = {1}.
If the elements of M satisfy any of these conditions, then it necessarily has
accepted length density.

Comment: While many such M can be constructed (using numerical and
congruence monoids), there does not seem to be an indepth study of such
monoids in the factorization literature.
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Basic Ideas and Bounds on the Length Density

We start with a more general proposition.

Proposition

Let x ∈ MLI . Then

1

max ∆(x)
≤ LD(x) ≤ 1

min ∆(x)
, (3)

with equality if and only if |∆(x)|= 1. Hence

1

max ∆(M)
≤ LD(M) ≤ 1

min ∆(M)
. (4)
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Basic Ideas and Bounds on the Length Density

Immediately we obtain the following.

Corollary

Let M be an atomic monoid. If ∆(M) = {d} for some positive integer d,
then LD(x) = 1

d and consequently LD(x) = 1
d for all x ∈ MLI . It follows

that LD(M) = 1
d and that the length density of M is accepted.

Example

The bounds in the last Proposition may be strict. For instance, take the
numerical moniod M = 〈6, 9, 20〉. Here ∆(M) = {1, 2, 3, 4}, and we have
LD(18) = 1 and LD(60) = 4

7 . It can be shown that LD(M) = 4
7 , and that

LD(x)→ 1 as x →∞. For example, LD(1000) = 109
112 .
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Examples

Example

We construct a monoid with nonzero rational length density which is not
accepted. Let M be the quotient of the free abelian monoid on atoms
a1, a2, . . . with the minimal relations

a3
1 = a4

2 = a6
3

a3
4 = a4

5 = a6
6 = a8

7

a3
8 = a4

9 = a6
10 = a8

11 = a10
12

a3
13 = a4

14 = a6
15 = a8

16 = a10
17 = a12

18

...
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Examples

Example

Note that every atom is contained in exactly one minimal relation and
hence, this monoid is an FF-monoid. Further, ∆(x) = {1, 2} for every
element of M with nonunique factorization, and ρ(M) =∞.
Consider the elements b1, b2, b3, . . . defined by the minimal relations, i.e.
b1 = a3

1, b2 = a3
4, . . .. We have

L(bi ) = {3, 4, 6, . . . , 2(i + 2)}

and from this

LD(bi ) =
i + 1

2i + 1
.

Taking i →∞, we get 1
2 , and therefore LD(M) ≤ 1

2 . But also
LD(M) ≥ 1

2 , as 2 = max ∆(M). Hence LD(M) = 1
2 . It cannot be

accepted, because no x ∈ M has ∆(x) = {2}.
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The Other Extreme

We now work toward the other extreme and start with a definition.

Definition

Let M be an atomic monoid. If for every nonempty finite subset
S ⊂ {2, 3, 4, . . .} = N− {1} there exists an element x ∈ MLI such that
L(x) = S , then we say that M has the Kainrath Property.

Clearly a monoid M with the Kainrath property satisfies ∆(M) = N. We
deduce another Corollary.

Corollary

If M has the Kainrath property, then LD(M) = 0 and
{LD(x) | x ∈ MLI} = (0, 1]. Hence, a monoid with the Kainrath property
does not have accepted length density.
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Nonrational and Accepted Elasticity

A fundamental question early in the study of elasticity was whether or not
an integral domain can have irrational elasticity.
Let a, b ∈ N with b > a. Let c ∈ [0, 1]. For each i ∈ N, set
k(i) = dic(b − a)e. We will now define the monoid M(a, b, c), as the free
abelian monoid on atoms {qi ,j : i , j ∈ N}, with minimal relations:

∀i ∈ N, qiai ,ia = qia+1
i ,ia+1 = qia+2

i ,ia+2 = · · · = q
ia+k(i)
i ,ia+k(i) = qibi ,ib.

Proposition

Let a, b ∈ N with b > a. Let c ∈ [0, 1]. Then ρ(M(a, b, c)) = b
a and

LD(M(a, b, c)) = c.
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Finitely Generated Monoids have Accepted
Length Density

Theorem

If S is a finitely generated semigroup, then LD(S) is accepted.

Proof.

Involves an examination of the Betti elements of S .
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Block Monoids

We briefly approach the question of computing LD(B(G )) and start with a
known result concerning the delta set of such a block monoid. If
G =

∑k
i=1 Zni is a finite abelian group where ni |ni+1 for 1 ≤ i < k with

|G |≥ 3, then

[1, nk − 2] ⊆ ∆(B(G )) ⊆ [1, c(B(G ))− 2] ⊆ [1,D(G )− 2].

Here D(G ) represents the Davenport’s Constant of G . The quantity c(M)
is the catenary degree of the monoid M.

Proposition

If G is a finite abelian group with |G |≥ 3, then

1

c(B(G ))− 2
≤ LD(B(G )) ≤ 1.
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Block Monoids

Corollary

If G = Zn is cyclic, then LD(B(Zn)) =
1

n − 2
and if G =

∑k
i=1 Z2, then

LD(B(
k∑

i=1

Z2)) =
1

k − 1
.

We list an application of this Corollary to algebraic rings of integers.

Corollary

If R is a ring of algebraic integers with class number p where p is prime,

then LD(R) =
1

p − 2
.
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Asymptotic Length Density

We exhibit an atomic monoid with an element that lacks asymptotic
length density.

Example

Consider the Puiseux monoid

M =

〈
4

3
,

8

5
,

800

1201
,
a1

p1
,
a2

p2
, . . .

〉
.

The pi are a strictly increasing sequence of primes, and the ai are a strictly
increasing sequence of natural numbers defined recursively. Using known
results on Puiseux monoids, M is a BF-monoid (and an FF-monoid).
Our focus is on x = 8, and we calculate xn = 8n, as n grows large. An
extended argument shows the following.
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Example

Example

For n < 100, xn < 800, LD(xn) = 1.

At n = 100, LD(x100) < 1
2 .

As n continues to increase, so long as 8n < a1, all factorizations of xn

will include only the first three atoms. An extended computation
shows that LD(x2900) > 3

4 .

We are now ready to choose the next atom. Set a1 = 2901 · 8, and
p1 > 2 · 1201 · 30, e.g. p1 = 72073. Using only the first three atoms,
all factorizations of x2901 are of length at most 30 · 1201. Using the
new fourth atom, we get a new factorization of length p1, and we can
argue that LD(x2901) < 1

2 .

By continuing in this way, we find that LD(xn) can be made to grow
to be above 3

4 , then to shrink below 1
2 , over and over as n→∞.

Hence the asymptotic length density of x does not exist.
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When do we get Asymptotic Length Densitites?

What atomic monoids admit asymptotic length densities for all their
elements?

While we do not completely answer this, we offer a large class that does.
If M is a monoid and x ∈ M, then let ‖x‖ denote the set of all elements in
M that divide xk for some k ∈ N. For a ∈ M and x ∈ Z (M), let
t(a, x) ∈ N0 − {1} denote the the tame degree of a with respect to x . If
u ∈ M, then set t(M, u) = sup{t(x , u) | x ∈ M}.

The monoid M is locally tame if t(M, u) <∞ for each atom u of M. If M
is an atomic locally tame monoid, then M is a BF-monoid. The tame
degree of M, is defined by t(M) = sup{t(M, u) | u ∈ A(M)}. If
t(M) <∞, then M is called globally tame. Since c(H) ≤ t(H), global
tameness implies finiteness of the catenary degree.
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The Theorem

Theorem

Let S be a locally tame atomic monoid and for x ∈ S set H = ‖x‖.
Assume for x ∈ S that ∆(x) 6= ∅ and | ∆(H) |<∞. Let d = min ∆(H), τ
be minimal such that d ∈ ∆(xτ ), ψ = max(τ, ρ(∆(H))− 1), and
T = t(H,Z (xψ)). For all n ≥ ψ it follows that

1

d
− 2T

nd2
≤ LD(xn) ≤ 1

d
.

In particular, LD(x) = 1/d.

Corollary

If S is NICE, then all elements of S admit asymptotic length densities.
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Examples

Example

1 Finitely generated monoids are globally tame, hence all nonunit
elements admit asymptotic length densities.

2 Let H be a Krull monoid with class group G and let G0 ⊂ G denote
the set of classes containing prime divisors. If the Davenport constant
D(G0) <∞ (which holds if G0 is finite), then H is globally tame.
Thus such Krull monoids, such as the ring of algebraic integers in a
finite extension of the rationals, satisfy Theorem 18.

3 Every C-monoid (see Definition 2.9.5 in GHKB) is locally tame and
has finite catenary degree. Orders in algebraic number fields fall into
this class.
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