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Abstract. We compute the catenary degree of elements contained in numerical monoids
generated by arithmetic sequences. We find that this can be done by describing each element
in terms of the cardinality of its length set and of its set of factorizations. As a corollary,
we find for such monoids that the catenary degree becomes fixed on large elements. This
allows us to define and compute the dissonance number - the largest element with a catenary
degree different from the fixed value. We determine the dissonance number in terms of the
arithmetic sequence’s starting point and its number of generators.

1. Introduction

The study of the arithmetic of integral domains and monoids which fail to satisfy the Fun-
damental Theorem of Arithmetic has become a popular area of research over the past twenty
years (see the monograph [11] for a survey of this area as well as an extensive bibliography).
Of the various combinatorial constants studied in this field, the catenary degree (cf. Section
2) has been the subject of many recent papers in the literature (for example, see [1], [3], [5],
[6], [9], [10], [12], and [13]). If c(S) denotes the catenary degree of the monoid S, then in [6]
the authors show the following for a numerical monoid generated by an arithmetic sequence.

Theorem 1.1. [6, Theorem 14] Let S = 〈a, a+ d, . . . , a+ kd〉 where a, d, and k are positive
integers, gcd(a, d) = 1, and 1 ≤ k ≤ a− 1. Then

c(S) =
⌈a
k

⌉
+ d.

The papers cited previously consider (as does Theorem 1.1) the computation of the catenary
degree of an entire monoid. In this paper, we explore a different avenue and consider the
catenary degrees of individual elements of a monoid. We note that this is similar in spirit to
previous research with respect to the elasticity of a monoid in [7]. We show in Theorem 3.1
that aside from the value obtained in Theorem 1.1, the elements of such an S can take on
only two other catenary degrees (namely 0 and 2) and completely characterize which elements
take on which values. If c(s) denotes the catenary degree of an individual element s ∈ S, then
as a by-product of Theorem 3.1, we show that the sequence {c(s)}s∈S eventually becomes
constant at the value c(S) given in Theorem 1.1. We set the dissonance of S, denoted dis(S),
equal to the largest s ∈ S with c(s) 6= c(S). In Theorem 4.3, we determine the dissonance of
all numerical monoids covered by Theorem 1.1. We begin our work with a brief introduction
in Section 2. Section 3 contains a proof of Theorem 3.1 and Section 4 a proof of Theorem 4.3.
Any undefined notation concerning numerical monoids can be found in [15] and undefined
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terms concerning factorization theory in [11]. Calculations done to support this work were
completed using the GAP numerical semigroups package [8]. We believe this paper is but
a first step, as computing the complete set of catenary degrees in various classes of integral
domains and monoids promises to be a challenging question.

2. Definitions and Preliminaries

A numerical monoid S is a co-finite additive submonoid of N0. A set of positive integers
n1, . . . , nk is said to generate S if S = 〈n1, . . . , nk〉 = {a1n1 + · · · + aknk | a1, . . . , ak ∈ N0}.
It easily follows from elementary number theory that every numerical monoid is finitely
generated and in fact has a unique set of generators of minimal length. If k is the cardinality
of this minimal set of generators, then we call k the embedding dimension of S. Moreover,
co-finite additivity forces gcd(n1, . . . , nk) = 1. Since N0 \ S is finite, the largest number in
the complement of S has special algebraic properties and is called the Frobenius number of
S, denoted F(S).

Let S = 〈n1, · · · , nk〉 be a numerical monoid. We assume that n1 < n2 < · · · < nk.
Hence, the minimal generating set {n1, . . . , nk} of S constitutes the set of irreducibles of
S in the normal sense. For s ∈ S, let Z(s) be the set of factorizations of s. We denote an
arbitrary element z ∈ Z(s) with the k-tuple of natural numbers (a1, . . . , ak), which represents
the factorization (a1)n1 + (a2)n2 + . . . + (ak)nk. We say that the length of a factorization
z ∈ Z(s) is

|z|= a1 + · · ·+ ak.

The set of lengths of an element, denoted L(s), is the set containing the numerical values of
the length of each factorizations of s, that is,

L(s) = {|z|: z ∈ Z(s)}.

The delta set of an element, denoted ∆(s), is the set containing the differences of lengths of
consecutive elements of L(s). That is, if L(s) = {m1, . . . ,mt} with m1 < m2 < · · · < mt,
then

∆(s) = {mi+1 −mi | 1 ≤ i < t}.
The delta set of S is then defined as

∆(S) =
⋃

s∈S,s>0

∆(s).

Let z = (a1, . . . , ak) and z′ = (b1, . . . , bk) ∈ Z(s). We say that the greatest common divisor
(GCD) of z and z′ is

gcd(z, z′) = (min{a1, b1}, . . . ,min{ak, bk}),

and we define the distance between z and z′ as

d(z, z′) = max{|z − gcd(z, z′)|, |z′ − gcd(z, z′)|},

where the subtraction is taken component-wise. By [11, Proposition 1.2.5], this distance
function yields a well-defined metric.

Definition 2.1. Given two factorizations z and z′ of s ∈ S, an N-chain connecting them is
a sequence of factorizations

z = z0, z1, . . . , zn−1, zn = z′
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such that each zi ∈ Z(s) and d(zi, zi+1) ≤ N for all i < n. For s ∈ S, we define the catenary
degree of s (denoted c(s)) to be the minimal N such that there is an N -chain between any
two factorizations of s. We define the catenary degree of the whole monoid as

c(S) = sup{c(s) | s ∈ S}.

Remark 2.2. We note that computing catenary degrees for elements in an embeddding
dimension two monoid is essentially trivial. If S = 〈a, b〉 with gcd(a, b) = 1 and a < b, then
moving from one factorization to another is merely an application of the rule

b+ · · ·+ b︸ ︷︷ ︸
a times

= a+ · · ·+ a︸ ︷︷ ︸
b times

(see [15, Example 8.22]). Thus the catenary degree of an element in S is either 0 or b, and
can be described as follows.

c(s) =



0 if s < ab
b if s = ab
0 if ab < s < 2ab− a− b and s− ab 6∈ 〈a, b〉
b if ab < s < 2ab− a− b and s− ab ∈ 〈a, b〉
0 if s = 2ab− a− b
b if 2ab− a− b < s.

3. The Catenary Degree of Elements in Numerical Monoids Generated By an
Arithmetic Sequence

Throughout the remainder of our work, S = 〈a, a + d, . . . , a + kd〉 is a numerical monoid
with 1 < k < a and gcd(a, d) = 1. When presented in this form, we assume that {a, a +
d, . . . , a + kd} is the minimal generating set for S. Notice that if a = 2, then k < a implies
that we are in the two generator case. Since this is addressed in Remark 2.2, we assume
a > 2. For monoids generated by an arithmetic sequence, the Frobenius number is known to
be F(S) = (ba−2k c + 1)a + (d − 1)(a − 1) − 1 (see [14]). Moreover, by [4], ∆(S) = {d}. The
remainder of this section contains a proof of the following Theorem.

Theorem 3.1. Given S = 〈a, a+ d, . . . , a+ kd〉, where gcd(a, d) = 1, 1 < k < a, and s ∈ S,
then

c(s) =

 0 if |Z(s)|= 1,
2 if |Z(s)|> 1 and |L(s)|= 1,⌈
a
k

⌉
+ d if |L(s)|> 1.

We begin developing the machinery needed to prove Theorem 3.1 with a distance two fac-
torization lemma. We will eventually deduce that all factorizations produced in this manner
can be connected by chains where each step has distance two.

Lemma 3.2. Let s ∈ S and take z ∈ Z(s), z = (ρ0, . . . , ρk). If ρi 6= 0 and ρj 6= 0 for some
i, j ∈ {0, . . . , k}, i < j−2, then, z′ = (ρ0, . . . , ρi−1, ρi+1+1, . . . , ρj−1+1, ρj−1, . . . , ρk) ∈ Z(s)
and |z|= |z′|. In addition, d(z, z′) = 2.

Proof. Clearly, |z|= |z′|. Now notice that

(ρi − 1)(a+ id) + (ρi+1 + 1)(a+ (i+ 1)d) + (ρj−1 + 1)(a+ (j − 1)d) + (ρj − 1)(a+ jd)

= ρi(a+ id) + ρi+1(a+ (i+ 1)d) + ρj−1(a+ (j − 1)d) + ρj(a+ jd).
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Since the other factors besides ρi, ρi+1, ρj−1, ρj in z are the same as the ones in z′, we can
say that z′ ∈ Z(s). Also, since

gcd (z, z′) = (ρ0, . . . , ρi − 1, ρi, . . . , ρj−1, ρj − 1, . . . , ρk)

we have that

d(z, z′) = max{|z − gcd (z, z′)|, |z′ − gcd (z, z′)|} = 2. �

Lemma 3.3. Let s ∈ S and take z = (ρ0, . . . , ρk) ∈ Z(s). If ρi 6= 0 and ρj 6= 0 for some
i, j ∈ {0, . . . , k}, i = j − 2, then, z′ = (ρ0, . . . , ρi − 1, ρi+1 + 2, ρj − 1, . . . , ρk) ∈ Z(s) and
|z|= |z′|. In addition, d(z, z′) = 2.

Proof. Clearly, |z|= |z′|. Recall that j = i+ 2. Now notice that

(ρi − 1)(a+ id) + (ρi+1 + 2)(a+ (i+ 1)d) + (ρi+2 − 1)(a+ (i+ 2)d)

= ρi(a+ id) + ρi+1(a+ (i+ 1)d) + ρi+2(a+ (i+ 2)d).

Since the other factors besides ρi, ρi+1, ρi+2 in z are the same as the ones in z′, we can say
that z′ ∈ Z(s). Also, since

gcd (z, z′) = (ρ0, . . . , ρi − 1, ρi+1, ρi+2 − 1, . . . , ρk)

we have that

d(z, z′) = max{|z − gcd (z, z′)|, |z′ − gcd (z, z′)|} = 2. �

Lemma 3.4. Let s ∈ S and take z ∈ Z(s). Then, there exists z′ ∈ Z(s) such that |z|= |z′|
and z′ has at most two nonzero entries at i and j such that j = i + 1 or i = j, where
j ∈ {0, . . . , k}. In addition, there exists a 2-chain between z and z′.

Proof. Let z = (ρ0, . . . , ρk). Take the smallest i such that ρi 6= 0. Similarly, take the
maximum j such that ρj 6= 0. If i = j or i = j − 1, then the proof is complete.

Suppose i = j − 2. By Lemma 3.3 we have that there exists z1 ∈ Z(s) with |z1|= |z| with
the following structure

z1 = (0, . . . , ρi − 1, ρi+1 + 2, ρj − 1, . . . , 0).

Suppose i < j − 2. By Lemma 3.2 we have that there exists z1 ∈ Z(s) with |z1|= |z| with
the following structure

z1 = (0, . . . , ρi − 1, ρi+1 + 1, ρi+2, . . . , ρj−1 + 1, ρj − 1, . . . , 0).

Observe that by applying Lemma 3.2 or Lemma 3.3 min{ρi, ρj}-times, we will obtain other
factorizations with the same length as z in which either the i-coordinate or the j-coordinate
is zero. Thus, if i 6= j and i 6= j − 1, we can always create a new factorization with the same
length as z in which the element’s nonzero coordinates are indexed closer together. After
finitely many iterations, it will be reduced to a factorization z′ with the desired properties.
In addition, in each application of Lemmas 3.2 and 3.3, d(z, z1) = 2. After finitely many
applications, we have created 2-chain from z to z′. �

Lemma 3.5. Let s ∈ S and take z, z′ ∈ Z(s), with |z|= |z′|. If for some i, j ∈ {0, . . . , k− 1}
we have that z = (0, . . . , ρi, ρi+1, . . . , 0) and z′ = (0, . . . , βj , βj+1, . . . , 0), where ρi and βj are
nonzero, then z = z′.



CATENARY DEGREES OF ELEMENTS 5

Proof. If pi+1 = βj+1 = 0, then the result is trivial. So assume that at least one is nonzero.
Assume without loss of generality that i ≥ j. Since |z|= |z′|,

ρi + ρi+1 = βj + βj+1. (1)

In addition,

ρi(a+ id) + ρi+1(a+ (i+ 1)d) = βj(a+ jd) + βj+1(a+ (j + 1)d) =⇒
(ρi + ρi+1)a+ (iρi + iρi+1 + ρi+1)d = (βj + βj+1)a+ (jβj + jβj+1 + βj+1)d. (2)

By (1), we can eliminate the a’s from (2), which results in:

(iρi + iρi+1 + ρi+1)d = (jβj + jβj+1 + βj+1)d =⇒
iρi + iρi+1 + ρi+1 = jβj + jβj+1 + βj+1 =⇒

i(ρi + ρi+1) + ρi+1 = j(βj + βj+1) + βj+1. (3)

By (1), we have that (3) can be transformed to

(4)(i− j)(ρi + ρi+1) + ρi+1 = βj+1.

If i = j, then by (4), ρi+1 = βj+1, and so ρi = βi. Moreover, z = z′.

Now if i 6= j, then i− j ≥ 1. Let i− j = m. We have that

m(ρi + ρi+1) + ρi+1 = βj+1. (5)

Substituting (5) into (1), we get

mρi +mρi+1 + ρi+1 + βj = ρi + ρi+1.

Cancelling common terms, we get

mρi +mρi+1 + βj = ρi.

This is a contradiction as we assumed that m > 0 and βj 6= 0. Therefore i = j and thus
z = z′. �

Lemma 3.6. Let s ∈ S and take z, z′ ∈ Z(s), with |z|= |z′|. Then, there exists a 2-chain
from z to z′.

Proof. By Lemma 3.4 we have that there exists f, f ′ ∈ Z(s) such that |f |= |z|, |f ′|= |z′|,
both have at most two nonzero consecutive entries, and there exists a 2-chain from f to z as
well as from f ′ to z′. In addition, by Lemma 3.5, we have that f ′ = f . Then, there exists a
2-chain from z to z′. �

Finally, we can state the much anticipated first theorem.

Theorem 3.7. Let s ∈ S. Then, c(s) = 2 if and only if |Z(s)|> 1 and |L(s)|= 1

Proof. (⇒) The proof in this direction follows immediately from [11, Lemma 1.6.2].
(⇐) Now suppose |Z(s)|> 1 and all the factorizations of s have the same length. Let us

show that c(s) = 2. Take two arbitrary factorizations of s, say z, z′ ∈ Z(s). Notice that we
can take two different factorizations because |Z(s)|> 1. By Lemma 3.6, there exists a 2-chain
from z to z′. Clearly, c(s) = 2. �

To complement the last result, we consider what happens when the set of factorizations
yields more than one length.
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Theorem 3.8. If s ∈ S with |L(s)|> 1, then c(s) = c(S).

Proof. Let s ∈ S with |L(s)|> 1. Consider an N -chain of minimal value N connecting
two elements of different length. Such a chain must also have a link between elements
of different length. Take z, z′ ∈ Z(s) such that d(z, z′) ≤ N to be such a link. Denote
z = (a0, a1, a2, · · · , ak) and z′ = (b0, b1, b2, · · · , bk). Without loss of generality assume that
|z|> |z′|. For simplicity, for each 0 ≤ i ≤ k set ni = a+ id. We can say that

s =
k∑

i=0

aini =
k∑

i=0

bini.

Let y = z − gcd(z, z′) = (y0, y1, . . . , yk) and y′ = z′ − gcd(z, z′) = (y′0, y
′
1, . . . , y

′
k). Observe

that d(z, z′) = max{|y|, |y′|} = |y|. Also, |y′|= |z′ − gcd(z, z′)|.
Notice that since |Z(s)|> 1 and ∆(S) = {d} (see [4]), we have |z|= |z′|+qd where q ∈ N.

Since y and y′ are factorizations of the same element, we have |y|= |y′|+qd. So, we obtain

k∑
i=0

y′ink ≥
k∑

i=0

y′ini =
k∑

i=0

yini ≥
k∑

i=0

yin1

which implies that
k∑

i=0

y′ink ≥
k∑

i=0

yin1 = n1(
k∑

i=0

y′i + qd).

Thus,
k∑

i=0

y′ink ≥ n1
k∑

i=0

y′i + n1qd

which implies that
k∑

i=0

y′i(nk − n1) ≥ n1qd.

Now, |y′|=
k∑

i=0

y′i ≥
n1qd

kd
which implies that |y′|≥

⌈
a
kq
⌉

and so

|y|=
k∑

i=0

yi ≥
⌈a
k
· q
⌉

+ q · d ≥
⌈a
k

⌉
+ d = c(S).

Therefore, d(z, z′) = |y|≥ c(S). Since by definition c(s) ≤ c(S), the result follows. �

The piecewise representation of c(s) as represented in Theorem 3.1 now follows.

4. The Dissonance Number

As in the previous section, we continue assuming that S = 〈a, a + d, . . . , a + kd〉 with
1 < k < a and gcd(a, d) = 1. Moreover, F(S) = (ba−2k c + 1)a + (d − 1)(a − 1) − 1 and

c(S) =
⌈
a
k

⌉
+ d. In our calculations below, residues (i.e., a mod b) are always computed as

least positive residues.

Proposition 4.1. If s ∈ S with s > a · c(S) + F(S), then c(s) = c(S). Thus the sequence
{c(s)}s∈S is eventually constant.
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Proof. If v > 0 is an integer, then clearly s = a · c(S) +F(S) + v is in S and has at least one
factorization in terms of irreducibles in S. Now, by [6, Lemma 13], a ·c(S) can be represented
in terms of irreducibles in at least two different ways. One as c(S) many copies of a and
other as

a · c(S) =

{
a
k (a+ kd) if k | a
bakc(a+ kd) + (a+ (a mod k)d) otherwise.

In either case, a
k or bakc+ 1 are strictly less than c(S), so |L(s)|> 1. Therefore, by Theorem

3.8 we can conclude that c(s) = c(S). The second statement now follows. �

Based on Proposition 4.1, we make the following definition.

Definition 4.2. If s ∈ S is the biggest element in S such that c(s) 6= c(S), then we call s
the dissonance of S and we denote it by dis(S) = s.

From Proposition 4.1 it is clear that dis(S) ≤ a · c(S) +F(S). In this section, we compute
the dissonance as follows.

Theorem 4.3.

dis(S) =

{
a · c(S) + F(S) if 1 ≤ k < 2 + [a− 1 mod k] + [a− 2 mod k]
a · c(S) + F(S)− a if k ≥ 2 + [a− 1 mod k] + [a− 2 mod k].

Note that by Remark 2.2, when k = 1 and S = 〈a, b〉, then dis(S) = 2ab − a − b, which
matches the value in the formula above. Hence, we can assume throughout the remainder of
our work that k > 1 and we can freely use the results of Section 3. In the next theorem, we
begin to verify the second part of this equality.

Theorem 4.4. dis(S) < a · c(S) +F(S) if and only if k ≥ 2 + (a−1 mod k) + (a−2 mod k).

Proof. By Lemma 3.8, we know if an element s ∈ S has |L(s)|> 1, then c(s) = c(S). Thus,
we will look at when a · c(S) + F(S) has |L(s)|> 1. From Lemma 2.1 in [2], for any s ∈ S
there exist c1, c2 ∈ N and 0 ≤ c2 < a such that s = c1a+ c2d. So let s = a · c(S) +F(S), and
simplify to

s =

(⌈a
k

⌉
+

⌊
a− 2

k

⌋
+ d

)
a+ (a− 1)d.

By Theorem 2.2 in [2], we know |L(s)|> 1 if and only if
c2 − c1k
a+ kd

≤ −1. Therefore,

(a− 1)− k
(⌈a

k

⌉
+

⌊
a− 2

k

⌋
+ d

)
≤ −a− kd implies that 2a− 1− k

⌈a
k

⌉
− k

⌊
a− 2

k

⌋
≤ 0.

Hence, 2a− 1 ≤ k
⌈
a
k

⌉
+ k

⌊
a−2
k

⌋
implies that

2a− 1 ≤ k
⌊
a− 1

k

⌋
+ k + k

⌊
a− 2

k

⌋
. (6)

We know that,

k

⌊
a− 1

k

⌋
+ k + k

⌊
a− 2

k

⌋
= (a− 1)− [a− 1 mod k] + k + (a− 2)− [a− 2 mod k]

= 2a− 3− [a− 1 mod k]− [a− 2 mod k] + k.
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Therefore,

2a− 1 ≤ 2a− 3− [a− 1 mod k]− [a− 2 mod k] + k ⇒
k ≥ 2 + [a− 1 mod k] + [a− 2 mod k].

Thus, if a, k satisfies the above inequality then dis(S) < a · c(S) +F(S) because |L(a · c(S) +
F(S))|> 1. Every statement in this proof is reversible, so the proof is complete. �

In the case that the dissonance number is not a · c(S) + F(S), we next provide a lower
bound for the dissonance number.

Corollary 4.5. For S satisfying dis(S) < a·c(S)+F(S), it follows that c(a·c(S)+F(S)−a) 6=
c(S).

Proof. Assume that |L(a · c(S) + F(S)− a)|> 1. We have that

s = a · c(S) + F(S)− a = a
(⌈a
k

⌉
+ d
)

+ a

(⌊
a− 2

k

⌋
+ 1

)
+ (d− 1)(a− 1)− 1− a

= a

(⌈a
k

⌉
+

⌊
a− 2

k

⌋
+ d− 1

)
+ (a− 1)d.

By Theorem 2.2 in [2] and our assumption that |L(s)|> 1, we have that

a− 1− k(

(⌈a
k

⌉
+

⌊
a− 2

k

⌋
+ d− 1

)
≤ −a− kd

and hence

2a− 1− k
⌊
a− 1

k

⌋
− k − k

⌊
a− 2

k

⌋
+ k ≤ 0. (7)

We know,

k

⌊
a− 1

k

⌋
+ k

⌊
a− 2

k

⌋
= (a− 1)− [a− 1 mod k] + (a− 2)− [a− 2 mod k]

= 2a− 3− [a− 1 mod k]− [a− 2 mod k]. (8)

Now, substituting (8) into (7) and simplifying, we get

2 + [a− 1 mod k] + [a− 2 mod k] ≤ 0

which is a contradiction. Hence, we have proved that a · c(S) + F(S)− a has factorizations
of only one length and thus its catenary degree cannot be c(S). �

This next lemma will provide us with a necessary condition for any of these ‘in between’
numbers to be the dissonance number.

Lemma 4.6. If c(a · c(S) +F(S)− v) = 0 or 2 for 0 < v < a, then

⌈
a− 1

k

⌉
=

⌊
a− 1

k
+

1

2

⌋
.

Proof. Notice that F(S) ≡ −d (mod a). So,write ma + nd = a · c(S) + F(S) − v, where
0 ≤ n < a. Clearly, nd ≡ −d − v (mod a). Thus, (n + 1)d + v ≡ 0 (mod a). Suppose
that n = a − 1. Then we get v ≡ 0 (mod a), which contradicts our bounds on v. Hence,
0 ≤ n ≤ a− 2.

Since d(n + 1) + v ≡ 0 (mod a), there exists l ∈ N such that la = d(n + 1) + v ≤

d(a−1)+(a−1) = (d+1)(a−1). Then, l ≤ (d+ 1)(a− 1)

a
, and l ∈ N, so l ≤

⌊
(d+ 1)(a− 1)

a

⌋
.
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We observe that

⌊
(d+ 1)(a− 1)

a

⌋
≤ d. Reorganizing and then plugging in for c(S) and for

F(S), we see that

m =
a · c(S) + F − v − nd

a
=

(
⌈
a
k

⌉
+ d)a+ [(

⌊
a−2
k

⌋
+ 1)a+ (d− 1)(a− 1)− 1]− v − nd

a

=
⌈a
k

⌉
+ 2d+

⌊
a− 2

k

⌋
− d(n+ 1) + v

a
.

Observe that
⌈a
k

⌉
+

⌊
a− 2

k

⌋
=

⌈
a− 1

k

⌉
+

⌊
a− 1

k

⌋
, and that

d(n+ 1) + v

a
= l ≤ d as above.

So we can write

m =

⌈
a− 1

k

⌉
+

⌊
a− 1

k

⌋
+ 2d− l ≥

⌈
a− 1

k

⌉
+

⌊
a− 1

k

⌋
+ d.

If c(a · c(S) + F − v) = 0 or 2, then L(a · c(S) + F − v) contains one integer. Then by

Theorem 2.2 in [2], we have that

⌈
n−mk
a+ kd

⌉
= 0. Then

n−mk
a+ kd

> −1. Rearranging, we get

m <
a+ kd+ n

k
≤ a+ kd+ (a− 2)

k
=

2(a− 1)

k
+ d.

So m ≤
⌊

2(a− 1)

k

⌋
+ d =

⌊
a− 1

k

⌋
+

⌊
a− 1

k
+

1

2

⌋
+ d. Combining our two results so far, we

get the inequality⌈
a− 1

k

⌉
+

⌊
a− 1

k

⌋
+ d ≤ m ≤

⌊
a− 1

k

⌋
+

⌊
a− 1

k
+

1

2

⌋
+ d.

So
⌈
a−1
k

⌉
≤
⌊
a−1
k + 1

2

⌋
. Note that it is impossible for this inequality to be strict. We obtain

that ⌈
a− 1

k

⌉
=

⌊
a− 1

k
+

1

2

⌋
. �

Using Lemma 4.6 and its proof, we prove the next theorem by contradiction.

Theorem 4.7. Suppose dis(S) < a · c(S) +F(S), and let s ∈ {a · c(S) +F(S)− v | 0 < v <
a} ⊆ S. Then c(s) = c(S).

Proof. We use the notation of Lemma 4.6. From its proof, we know that

m ≥
⌈

(a− 1)

k

⌉
+

⌊
(a− 1

k

⌋
+ d

as well as

m <
2(a− 1)

k
+ d =

(2a− 1)

k
− 1

k
+ d.

Now assume dis(S) < ac(S) + F(S). By (6)

2(a− 1)

k
≤
⌊

(a− 1)

k

⌋
+

⌊
(a− 2)

k

⌋
+ 1.

Thus it follows immediately that⌈
(a− 1)

k

⌉
<

⌊
(a− 2)

k

⌋
+ (1− 1

k
).
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This is a contradiction, because
⌈
(a−1)

k

⌉
≥
⌊
(a−2)

k

⌋
+ 1. Thus, the proof is complete. �

Theorem 4.4 verifies the first part of the formula for dis(S) in Theorem 4.3. A combination
of Corollary 4.5 and Theorem 4.7 verifies the second part, completing the proof of Theorem
4.3.

Acknowledgment. The authors would like to thank the referee for many suggestions which
improved and drastically shortened our work.
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