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Background

This talk is based on the following paper.

Chapman, S. T. ”On the Davenport constant, the cross number, and their
application in factorization theory.” in Zero-Dimensional Commutative
Rings, Lecture Notes in Pure and Applied Mathematics 171(1995):
167-167.
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Introduction

120, 156, 232, 333, 386, 458, 568

Question: Can I choose a subset of these integers whose sum is divisible
by 7?

Answer: Yes! In fact, there are many ways and here are just a few:

333 + 458 = 791 = 113 · 7
156 + 232 + 458 + 568 = 1414 = 202 · 7
120 + 232 + 333 + 386 = 1071 = 153 · 7
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Introduction

120, 232, 386, 458

Question: How about now?

Answer: No! Why? Reduce the list modulo 7.

120 ≡ 1 (mod 7), 232 ≡ 1 (mod 7), 386 ≡ 1 (mod 7), 458 ≡ 3 (mod 7)

In fact, I really only need these numbers.

1, 1, 1, 3
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Moral

Moral: This is really a problem in Z7
∼= Z/7Z. Hence, it is really a Group

Theory problem!

How many elements must be in a sequence of elements from Z7 in
order to guarantee it contains a subsum that sums to 0?

Observations:

1 4 is not enough!

2 Is 7 enough?
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Needed Machinery

Today’s discussion will force us to view finite abelian groups in two ways.

The Fundamental Theorem of Finite Abelian Groups: Let G be a
finite Abelian group.

1 There exists a unique set of positive integers n1, n2, . . . , nk with
ni | ni+1 for 1 ≤ i ≤ k − 1 such that

G ∼= Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znk . (1)

The integers n1, . . . , nk are known as the invariant factors of G .

2 There exists a unique set of integers ps11 , p
s2
2 , . . . , p

st
t where the pi ’s

are not necessarily distinct primes, and the si ’s not necessarily distinct
positive integers such that

G ∼= Zp
s1
1
⊕ Zp

s2
2
⊕ · · · ⊕ Zp

sk
k
. (2)

The integers ps11 , p
s2
2 , . . . , p

st
t are known as the elementary divisors of

G .
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Needed Machinery

Definition: Given a finite abelian group G , the value of k from
representation (1) is known as the rank of G and denoted by rank(G ).

I will refer to G as written in form (1) as the invariant factor form of G .

I will refer to G as written in form (2) as the elementary divisor form of G .

Note: These forms seldom match. For instance they do not if G is cyclic
NOT of prime power order. So if p and q are distinct primes, then

Zpq
∼= Zp ⊕ Zq.
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Finite Abelian Groups

Some of our favorite finite abelian groups.

1 rank(G ) = 1 ⇒ G is cyclic.

2 rank(G ) = 2, so G ∼= Zn1 ⊕ Zn2 with n1 | n2. The Klein-4-group,
Z2 ⊕ Z2 is a good example.

3 Each ni is a power of a fixed prime p. Such a group is known as a
p-group. Hence in this case

G ∼= Zpm1 ⊕ Zpm2 ⊕ · · · ⊕ Zpmk .

Scott Chapman (SHSU) March 4, 2021 8 / 33



Finite Abelian Groups

Some of our favorite finite abelian groups.

1 rank(G ) = 1 ⇒ G is cyclic.

2 rank(G ) = 2, so G ∼= Zn1 ⊕ Zn2 with n1 | n2. The Klein-4-group,
Z2 ⊕ Z2 is a good example.

3 Each ni is a power of a fixed prime p. Such a group is known as a
p-group. Hence in this case

G ∼= Zpm1 ⊕ Zpm2 ⊕ · · · ⊕ Zpmk .

Scott Chapman (SHSU) March 4, 2021 8 / 33



Finite Abelian Groups

Some of our favorite finite abelian groups.

1 rank(G ) = 1 ⇒ G is cyclic.

2 rank(G ) = 2, so G ∼= Zn1 ⊕ Zn2 with n1 | n2. The Klein-4-group,
Z2 ⊕ Z2 is a good example.

3 Each ni is a power of a fixed prime p. Such a group is known as a
p-group. Hence in this case

G ∼= Zpm1 ⊕ Zpm2 ⊕ · · · ⊕ Zpmk .

Scott Chapman (SHSU) March 4, 2021 8 / 33



Minimal Zero-Sequences

Definition: Let G be a finite abelian group and S = {g1, . . . , gt} be a
sequence of not necessarily distinct nonzero elements from G .

1 S is called a zero-sequence if
∑t

i=1 gi = 0.

2 S called a minimal zero-sequence (or mzs) if it contains no proper
subzero-sequence.

Comment: In general, there is no reason that G must be Abelian. If it is
not, then this discussion becomes much different and will be left to
another time (and another speaker!).

Notation: For S an mzs as above, we set | S |= t. We also let B(G )
represent the set of zero-sequencs of G and U(G ) represent the set of
minimal zero-sequences in G . We count these irregardless of order.
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Examples

Let g 6= 0 in G with | g |= n. Then

S = {g , . . . , g}︸ ︷︷ ︸
kn times

is a zero-sequence and is minimal if and only if k = 1.
In particular, if G ∼= Zn = {0, 1, . . . , n − 1}, then one popular minimal
zero-sequence is

S = {1, . . . , 1}︸ ︷︷ ︸
n times

.
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Examples

Let g 6= 0 in G . Then
S = {g , g−1}

is a minimal zero-sequence.

If m1 + m2 + · · ·+ mk = n is a partition of n, then

S = {m1,m2, . . . ,mk}

is a minimal zero-sequence in Zn. Since the number of partitions of n
is asymptotic to

1

4n
√

3
exp

(
π

√
2n

3

)
the number of minimal zero-sequences in Zn grows extremely quickly.
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Examples

Let G have invariant form

G ∼= Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znk

and ei be the element of G consisting of 1 in the ith coordinate and 0
elsewhere. Then

SG = { e1, . . . , e1︸ ︷︷ ︸
n1−1 times

, e2, . . . , e2︸ ︷︷ ︸
n2−1 times

, . . . , ek , . . . , ek︸ ︷︷ ︸
nk−1 times

, e1 + e2 + · · ·+ ek}

is a minimal zero-sequence of G . So if G = Z3 ⊕ Z6, then

SG = {(1, 0), (1, 0), (0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (1, 1)}.

We note in particular that

| SG |=

[
k∑

i=1

(ni − 1)

]
+ 1 = 1− k +

[
k∑

i=1

ni

]
.
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The Definition

Taking one small liberty (which we will later justify), we make the
following definition.

Definition: Let G be a finite abelian group. The Davenport Constant of
G is

D(G ) = max{| S | | S ∈ U(G )}.

Scott Chapman (SHSU) March 4, 2021 13 / 33



Basic Results

Theorem

If G is a finite Abelian group, then

D(G ) ≤| G | .

Scott Chapman (SHSU) March 4, 2021 14 / 33



Proof

Proof.

Let S = {g1, . . . , gk} be a minimal zero-sequence with k > G . Thus
gi 6= 0 for all i . Let

γ1 = g1
γ2 = g1 + g2
...

...
...

γk = g1 + g2 + · · ·+ gk

Since none of the γi ’s are 0, γi = γj for some i > j . Thus

gj+1 + gj+2 + · · ·+ gk = 0,

which contradicts the minimality of S .

Scott Chapman (SHSU) March 4, 2021 15 / 33



Basic Results

Proposition

If G ∼= Zn for n > 0, then D(G ) = n.

Proof.

S = {1, . . . , 1}︸ ︷︷ ︸
n times

is a minimal zero-sequence of length n.

Moral: The computation of the Davenport constant on a cyclic group is
trivial.
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Non-Cyclic Groups

Example

If G is not cyclic, then the fun begins! For instance,

Z2 ⊕ Z2 = 3 <| Z2 ⊕ Z2 |= 4

as
SZ2⊕Z2 = {(1, 0), (0, 1), (1, 1)}

is the longest minimal zero-sequence of Z2 ⊕ Z2.

Let’s return to SG for G ∼= Zn1 ⊕Zn2 ⊕ · · · ⊕Znk written in invariant form.
We set

D∗(G ) =| SG |=

[
k∑

i=1

(ni − 1)

]
+ 1.
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The Erdős Conjecture

Theorem

If G is a finite abelian group, then

D∗(G ) ≤ D(G ) ≤| G | .

Conjecture (Erdős (mid 1960’s))

If G is a finite abelian group, then

D(G ) = D∗(G ).

Scott Chapman (SHSU) March 4, 2021 18 / 33



The Erdős Conjecture

Theorem

If G is a finite abelian group, then

D∗(G ) ≤ D(G ) ≤| G | .

Conjecture (Erdős (mid 1960’s))

If G is a finite abelian group, then

D(G ) = D∗(G ).

Scott Chapman (SHSU) March 4, 2021 18 / 33



The Erdős Conjecture is False!

van Emde Boas finally disproved this conjecture in 1969.

Example: Let
G = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z6

(here D∗(G ) = 10) and set e1 = (0, 1, 1, 1, 1), e2 = (1, 0, 1, 1, 1),
e3 = (1, 1, 0, 1, 1), e4 = (1, 1, 1, 0, 1), e5 = (0, 0, 0, 0, 1), e6 = (1, 0, 0, 0, 4),
e7 = (0, 1, 0, 0, 4), e8 = (0, 0, 1, 0, 4), e9 = (0, 0, 0, 1, 4) and
e10 = (1, 1, 1, 1, 4). Then T=

{e1, e2, e3, e4, e4, e5, e6, e7, e8, e9, e10}

is a sequence of length 10 which is not a zero sequence and does not
contain a mzs. Thus D(G ) > D∗ = 10.

This is the group of smallest known order (96) for which D(G ) > D∗.

Scott Chapman (SHSU) March 4, 2021 19 / 33



Is There An Easy Explanation?

Set G = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z6 = Z5
2 ⊕ Z3. Moreover, for k ≥ 5, set

Gk = Zk
2 ⊕ Z3.

k D(Gk) D∗(Gk)

5 11 10

6 12 11

7 13 12

8 15 13

k = 9 ⇒ THE COMPUTER EXPLODES!
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Open Problem

In a similar manner one can show that

G ∼= Z3 ⊕ Z3 ⊕ Z3 ⊕ Z6

has D(G ) > D∗(G ) = 12.

This is the group of smallest known rank (4) for which
D(G ) > D∗(G ).

Theorem (Olson, JNT 1969)

If G is a finite abelian group of rank ≤ 2, then D(G ) = D∗(G ).

Open For More Than 50 Years Problem: Let G be a finite abelian
group of rank 3. Is D(G ) = D∗(G )?

Scott Chapman (SHSU) March 4, 2021 21 / 33
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The Cross Number

There is a large class of groups for which it is known that D(G ) = D∗(G )

Theorem: If G is any of the following finite abelian groups, then
D(G ) = D∗(G ).

1 G has rank less than or equal to 2.

2 G is a p-group for p prime in Z. (Olson, JNT 1969)

3 G ∼= Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2m with m odd.

4 G ∼= Z3 ⊕ Z3 ⊕ Z6m where gcd (3,m) = 1.

5 G ∼= Z3·2n ⊕ Z3·2m ⊕ Z3·2s where n ≤ m ≤ s.
...

Scott Chapman (SHSU) March 4, 2021 22 / 33



The Cross Number

Here are two recent results of note.

Theorem

Let G ∼= Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znk be a finite abelian group written in
invariant form.

1 (Meshulam 1990 Discrete Math.) D(G ) ≤ nk

(
1 + log |G |nk

)
.

2 (Dimitrov 2007) D(G)
D∗(G) ≤ (Ck log k)k for some absolute constant C.

We close this section with an obvious problem.

Problem: Given a finite abelian group G , find a formula for D(G ).
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The Cross Number

We shift gears and consider another invariant related to the Davenport
constant. From this point onward, we will use groups written in
terms of their elementary divisors.

Definitions: Let G be a finite abelian group and S = {g1, . . . , gt} a
zero-sequence of G . The cross number of S is

k(S) =
t∑

i=1

1

| gi |

and the cross number of G is

K(G ) = max{k(S) | S is an mzs of G}.
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Where did this come from?

Where did this come from? The cross number is a key tool in studying
the factorization properties of rings of algebraic integers (like Z[

√
−5]) and

more general objects known as Krull monoids. The details of this will have
to be left to another talk.

Notice that
k : B(G )→ Q+

which acts like a homomorphism (i.e. k(S1S2) = k(S1) + k(S2)).
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Examples

Examples: Let G ∼= Z4. The minimal zero-sequences and associated cross
numbers of Z4 are:

S1 = (1, 1, 1, 1) k(S1) = 1
S2 = (2, 2) k(S2) = 1
S3 = (3, 3, 3, 3) k(S3) = 1
S4 = (3, 1) k(S4) = 1/2
S5 = (2, 1, 1) k(S5) = 1
S6 = (2, 3, 3) k(S6) = 1

Hence, K(Z4) = 1.
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Examples

Now, let G ∼= Z2 ⊕ Z2. The minimal zero-sequences and associated cross
numbers for Z2 ⊕ Z2 are:

S1 = ((0, 1), (0, 1)) k(S1) = 1
S2 = ((1, 1), (1, 1)) k(S2) = 1
S3 = ((1, 0), (1, 0)) k(S3) = 1
S4 = ((1, 0), (0, 1), (1, 1)) k(S4) = 3/2

Hence, K(Z2 ⊕ Z2) = 3/2.
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Basic Facts

Some Elementary Facts: Let G ∼= Zp
s1
1
⊕ Zp

s2
2
⊕ · · · ⊕ Zp

sk
k

in elementary

divisor form. Recall that exp(G ) = lcm{| x | | x ∈ G}.

1) K(G ) ≥ 1. (WHY?)

2) Let TG be the parallel mzs construction for groups in elementary divisor
form as that previously called SG . We have

k(TG ) =
1

exp(G )
+

k∑
i=1

psii − 1

psii
= K∗(G ).

Hence, K(G ) ≥ K∗(G ).

Scott Chapman (SHSU) March 4, 2021 28 / 33



Example

Example

Let G = Z6
∼= Z2 ⊕ Z3. Here

TZ6 = {(1, 0), (0, 1), (0, 1), (1, 1)}.

So,

k(TZ6) =
1

2
+

1

3
+

1

3
+

1

6
=

4

3
.

Open for 35 Years Problem: Is K(G ) = K∗(G ) for all finite abelian
groups G?
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Some Facts

Some Not So Elementary Facts:
1) (Krause, Math. Zeit. 1984) K(G ) = 1 if and only if G ∼= Zpn for some
prime number p.

2) (Geroldinger, JNT 1994) If G is a p-group (for p a prime) then
K(G ) = K∗(G ).

3) If G is any of the following abelian groups, then K(G ) = K∗(G ).

a) G is a p-group.

b) G ∼= Zpnq where p and q are distinct primes and n ≥ 1.

c) G ∼= Zpqr where p, q and r are distinct primes.

d) G ∼= Zp2q2 where p and q are distinct primes.

Moral: If G is cyclic, then K(G ) is probably not easy to compute.
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A Closing Example

Theorem

(Chapman-Geroldinger, ARS Comb. 1996) Let G ∼= Zpn1 ⊕ · · ·Zpnk be a
p-group with p odd. Thus

K(G ) =
1

pnk
+

k∑
i=1

pni − 1

pni
=

X

pnk
.

Then,

{k(S) | S ∈ U(G )} = { 2

pk
,

3

pk
, . . . ,

X − 1

pk
,
X

pk
}.
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Example

Example

Let G = Z3 ⊕ Z3 ⊕ Z9.

k(TG ) =
1

9
+ 4 · 1

3
+ 8 · 1

9
=

21

9
= K∗(G ) = K(G ).

{k(S) | S ∈ U(Z3 ⊕ Z3 ⊕ Z9)} = {2

9
,

3

9
, . . . ,

20

9
,

21

9
}.

Question: What happens if G is not a p-group?
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A Closing Example

An Example taken from Geroldinger & Schneider (ARS Comb. 1997). Let
p = 5 and q = 3:

{k(S) | S ∈ U(Z15)} = { 2

15
,

3

15
,

4

15
, . . . ,

20

15
,

21

15
,

23

15
}.

In Baginski et. al. (ARS Comb. 2004), the authors show (redacted
version):

If p >> q, then these holes multiply! For p = 11 and q = 5, we obtain:

{k(S) | S ∈ U(Z55)} = { 2

55
,

3

55
,

4

55
, . . . ,

87

55
,

90

55
,

91

55
,

95

55
}.
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