Factorization in Leamer Monoids: ω-Primality in Arithmetic Leamer Monoids

Scott Chapman

Sam Houston State University
September 4, 2018

The Student Authors

This talk is based on the work completed under my direction at the 2013 PURE REU at the University of Hawaii at Hilo and the 2014 Sam Houston State REU by the following students.

Jason Haarman
Ashlee Kalauli
Aleesha Moran
Zack Tripp

Two faculty also contributed to these results.

Chris O'Neill
Bob Pelayo

The Student Authors

This talk is based on the work completed under my direction at the 2013 PURE REU at the University of Hawaii at Hilo and the 2014 Sam Houston State REU by the following students.

Jason Haarman
Ashlee Kalauli
Aleesha Moran
Zack Tripp

Two faculty also contributed to these results.

Chris O'Neill
Bob Pelayo

Prologue

This talk is based on the papers:
[1] J. Haarman, A. Kalauli, A. Moran, C. O'Neill, R. Pelayo, Factorization properties of Leamer domains, Semigroup Forum 89(2014), 409-421.
[2] S.T. Chapman, Z. Tripp, ω-primality in arithmetic Leamer monoids, submitted.

More information and background on this area can be found in:
[3] C. O'Neill and R. Pelayo, How do you measure primality?, Amer. Math. Monthly 122(2015), 121-137.
[4] D. F. Anderson, S. T. Chapman, N. Kaplan, and D. Torkornoo, An algorithm to compute ω-primality in a numerical monoid, Semigroup Forum 82(2011), 96-108.

Prologue

This talk is based on the papers:
[1] J. Haarman, A. Kalauli, A. Moran, C. O'Neill, R. Pelayo, Factorization properties of Leamer domains, Semigroup Forum 89(2014), 409-421.
[2] S.T. Chapman, Z. Tripp, ω-primality in arithmetic Leamer monoids, submitted.

More information and background on this area can be found in:
[3] C. O'Neill and R. Pelayo, How do you measure primality?, Amer. Math. Monthly 122(2015), 121-137.
[4] D. F. Anderson, S. T. Chapman, N. Kaplan, and D. Torkornoo, An
algorithm to compute ω-primality in a numerical monoid, Semigroup Forum 82(2011), 96-108

Prologue

This talk is based on the papers:
[1] J. Haarman, A. Kalauli, A. Moran, C. O’Neill, R. Pelayo, Factorization properties of Leamer domains, Semigroup Forum 89(2014), 409-421.
[2] S.T. Chapman, Z. Tripp, ω-primality in arithmetic Leamer monoids, submitted.

More information and background on this area can be found in:
[3] C. O'Neill and R. Pelayo, How do you measure primality?, Amer. Math. Monthly 122(2015), 121-137.
[4] D. F. Anderson, S. T. Chapman, N. Kaplan, and D. Torkornoo, An
algorithm to compute ω-primality in a numerical monoid, Semigroup Forum 82(2011), 96-108

Prologue

This talk is based on the papers:
[1] J. Haarman, A. Kalauli, A. Moran, C. O'Neill, R. Pelayo, Factorization properties of Leamer domains, Semigroup Forum 89(2014), 409-421.
[2] S.T. Chapman, Z. Tripp, ω-primality in arithmetic Leamer monoids, submitted.

More information and background on this area can be found in:
[3] C. O'Neill and R. Pelayo, How do you measure primality?, Amer. Math. Monthly 122(2015), 121-137.
[4] D. F. Anderson, S. T. Chapman, N. Kaplan, and D. Torkornoo, An algorithm to compute ω-primality in a numerical monoid, Semigroup Forum 82(2011), 96-108.

Why Leamer Monoids?

Conjecture (Huneke-Wiegand)

Let R be a one-dimensional Gorenstein domain. Let $M \neq 0$ be a finitely generated R-module, which is not projective. Then the torsion submodule of $M \otimes_{R} \operatorname{Hom}_{R}(M, R)$ is non-trivial.

> Proposition (García-Sánchez and Leamer, J. Algebra 2013)
> Let Γ be a numerical monoid and \mathbb{K} be a field. The monoid algebra $\mathbb{K}[\Gamma]$ satisfies the Huneke-Wiegand conjecture for monomial ideals generated by two elements if and only if for each $s \in \mathbb{N} \backslash \Gamma$, there exists an irreducible arithmetic sequence of the form $\{x, x+s, x+2 s\}$ in Γ

Why Leamer Monoids?

Conjecture (Huneke-Wiegand)

Let R be a one-dimensional Gorenstein domain. Let $M \neq 0$ be a finitely generated R-module, which is not projective. Then the torsion submodule of $M \otimes_{R} \operatorname{Hom}_{R}(M, R)$ is non-trivial.

Proposition (García-Sánchez and Leamer, J. Algebra 2013)

Let Γ be a numerical monoid and \mathbb{K} be a field. The monoid algebra $\mathbb{K}[\Gamma]$ satisfies the Huneke-Wiegand conjecture for monomial ideals generated by two elements if and only if for each $s \in \mathbb{N} \backslash \Gamma$, there exists an irreducible arithmetic sequence of the form $\{x, x+s, x+2 s\}$ in Γ.

Introduction

Definition

Given a numerical monoid $\Gamma, s \in \mathbb{N} \backslash \Gamma$, define

$$
S_{\Gamma}^{s}=\{(0,0)\} \cup\{(x, n):\{x, x+s, x+2 s, \ldots, x+n s\} \subset \Gamma\} \subset \mathbb{N}^{2}
$$

That is, S_{Γ}^{s} is the collection of arithmetic sequences of step size s contained in Γ.

Example
 For $\Gamma=\{7,10\rangle$ and $s=3$, the graph of the Leamer monoid $S_{(7,10)}^{3}$ is given below in Figure 2. In this example, Γ is generated by an arithmetic sequence with step size 3 , which is equal to s. The Frobenius number of Γ (53 in this case) can be easily read off the graph as the rightmost column absent of any dots.

Introduction

Definition

Given a numerical monoid $\Gamma, s \in \mathbb{N} \backslash \Gamma$, define

$$
S_{\Gamma}^{s}=\{(0,0)\} \cup\{(x, n):\{x, x+s, x+2 s, \ldots, x+n s\} \subset \Gamma\} \subset \mathbb{N}^{2}
$$

That is, S_{Γ}^{s} is the collection of arithmetic sequences of step size s contained in Γ.

Example

For $\Gamma=\langle 7,10\rangle$ and $s=3$, the graph of the Leamer monoid $S_{\langle 7,10\rangle}^{3}$ is given below in Figure 2. In this example, Γ is generated by an arithmetic sequence with step size 3 , which is equal to s. The Frobenius number of Γ (53 in this case) can be easily read off the graph as the rightmost column absent of any dots.

The Notation of Factorization Theory

Figure: The Leamer Monoid $S_{\langle 7,10\rangle}^{3}$.

Another Pictorial View

Figure: The Leamer Monoid $S_{\langle 13,17,22,40\rangle}^{4}$.

Even More Notation

Consider factorizations of the form

$$
x=x_{1} \cdots x_{k}=y_{1} \cdots y_{t}
$$

which may not be unique.
If $x \in M^{\circ}$, then the set of lengths of x is

$$
\mathcal{L}(x)=\left\{k \in \mathbb{N} \mid x=a_{1} a_{2} \cdots a_{k} \text { where } a_{i} \in \mathcal{A}(M(a, n))\right\} .
$$

Even More Notation

Consider factorizations of the form

$$
x=x_{1} \cdots x_{k}=y_{1} \cdots y_{t}
$$

which may not be unique.
If $x \in M^{\bullet}$, then the set of lengths of x is

$$
\mathcal{L}(x)=\left\{k \in \mathbb{N} \mid x=a_{1} a_{2} \cdots a_{k} \text { where } a_{i} \in \mathcal{A}(M(a, n))\right\} .
$$

The Notation Continues Coming

Set

$$
\ell(x)=\min \mathcal{L}(x) \text { and } L(x)=\max \mathcal{L}(x)
$$

If $\mathcal{L}(x)=\left\{n_{1}, \ldots, n_{t}\right\}$ with the n_{i} 's listed in increasing order, then set

$$
\Delta(x)=\left\{n_{i}-n_{i-1} \mid 2 \leq i \leq t\right\}
$$

and

$$
\Delta(M)=\bigcup_{1 \neq x \in M_{\bullet}} \Delta(x)
$$

If $\Delta(M) \neq \emptyset$, then,
$\min \Delta(M)=\operatorname{gcd} \Delta(M)$.

The Notation Continues Coming

Set

$$
\ell(x)=\min \mathcal{L}(x) \text { and } L(x)=\max \mathcal{L}(x)
$$

If $\mathcal{L}(x)=\left\{n_{1}, \ldots, n_{t}\right\}$ with the n_{i} 's listed in increasing order, then set

$$
\Delta(x)=\left\{n_{i}-n_{i-1} \mid 2 \leq i \leq t\right\}
$$

and

$$
\Delta(M)=\bigcup_{1 \neq x \in M^{\bullet}} \Delta(x)
$$

If $\Delta(M) \neq \emptyset$, then,

$$
\min \Delta(M)=\operatorname{gcd} \Delta(M)
$$

The Elasticity of Factorization

The elasticity of an element $x \in M^{\bullet}$, denoted $\rho(x)$, is given by

$$
\rho(x)=\max (\mathcal{L}(x)) / \min (\mathcal{L}(x)) .
$$

The elasticity of M is then defined as

$$
\rho(M)=\sup \left\{\rho(x) \mid x \in M^{\bullet}\right\} .
$$

The Elasticity of Factorization

The elasticity of an element $x \in M^{\bullet}$, denoted $\rho(x)$, is given by

$$
\rho(x)=\max (\mathcal{L}(x)) / \min (\mathcal{L}(x)) .
$$

The elasticity of M is then defined as

$$
\rho(M)=\sup \left\{\rho(x) \mid x \in M^{\bullet}\right\}
$$

The Elasticity of Factorization

The elasticity of an element $x \in M^{\bullet}$, denoted $\rho(x)$, is given by

$$
\rho(x)=\max (\mathcal{L}(x)) / \min (\mathcal{L}(x)) .
$$

The elasticity of M is then defined as

$$
\rho(M)=\sup \left\{\rho(x) \mid x \in M^{\bullet}\right\}
$$

More Definitions

For $z=\left(z_{1}, \ldots, z_{p}\right), z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{p}^{\prime}\right) \in \mathbb{N}^{p}$ write

$$
\operatorname{gcd}\left(z, z^{\prime}\right)=\left(\min \left\{z_{1}, z_{1}^{\prime}\right\}, \ldots, \min \left\{z_{p}, z_{p}^{\prime}\right\}\right)
$$

Define

to be the distance between z and z^{\prime}. If $Z^{\prime} \subseteq Z(s)$, then set

$$
d\left(z, z^{\prime}\right)=\min \left\{d\left(z, z^{\prime}\right) \mid z^{\prime} \in z^{\prime}\right\} .
$$

More Definitions

For $z=\left(z_{1}, \ldots, z_{p}\right), z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{p}^{\prime}\right) \in \mathbb{N}^{p}$ write

$$
\operatorname{gcd}\left(z, z^{\prime}\right)=\left(\min \left\{z_{1}, z_{1}^{\prime}\right\}, \ldots, \min \left\{z_{p}, z_{p}^{\prime}\right\}\right)
$$

and

$$
\frac{z}{z^{\prime}}=z-z^{\prime}
$$

Define

to be the distance between z and z^{\prime}. If $Z^{\prime} \subseteq Z(s)$, then set

$$
d\left(z, z^{\prime}\right)=\min \left\{d\left(z, z^{\prime}\right) \mid z^{\prime} \in z^{\prime}\right\} .
$$

More Definitions

For $z=\left(z_{1}, \ldots, z_{p}\right), z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{p}^{\prime}\right) \in \mathbb{N}^{p}$ write

$$
\operatorname{gcd}\left(z, z^{\prime}\right)=\left(\min \left\{z_{1}, z_{1}^{\prime}\right\}, \ldots, \min \left\{z_{p}, z_{p}^{\prime}\right\}\right)
$$

and

$$
\frac{z}{z^{\prime}}=z-z^{\prime}
$$

Define

$$
\mathrm{d}\left(z, z^{\prime}\right)=\max \left\{\left|\frac{z}{\operatorname{gcd}\left(z, z^{\prime}\right)}\right|,\left|\frac{z^{\prime}}{\operatorname{gcd}\left(z, z^{\prime}\right)}\right|\right\},
$$

to be the distance between z and z^{\prime}. If $Z^{\prime} \subseteq Z(s)$, then set

$$
d\left(z, Z^{\prime}\right)=\min \left\{d\left(z, z^{\prime}\right) \mid z^{\prime} \in Z^{\prime}\right\} .
$$

More Definitions

For $z=\left(z_{1}, \ldots, z_{p}\right), z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{p}^{\prime}\right) \in \mathbb{N}^{p}$ write

$$
\operatorname{gcd}\left(z, z^{\prime}\right)=\left(\min \left\{z_{1}, z_{1}^{\prime}\right\}, \ldots, \min \left\{z_{p}, z_{p}^{\prime}\right\}\right)
$$

and

$$
\frac{z}{z^{\prime}}=z-z^{\prime}
$$

Define

$$
\mathrm{d}\left(z, z^{\prime}\right)=\max \left\{\left|\frac{z}{\operatorname{gcd}\left(z, z^{\prime}\right)}\right|,\left|\frac{z^{\prime}}{\operatorname{gcd}\left(z, z^{\prime}\right)}\right|\right\},
$$

to be the distance between z and z^{\prime}. If $Z^{\prime} \subseteq Z(s)$, then set

$$
d\left(z, Z^{\prime}\right)=\min \left\{d\left(z, z^{\prime}\right) \mid z^{\prime} \in Z^{\prime}\right\} .
$$

More Definitions

Given $n \in S$ and $z, z^{\prime} \in \mathbb{F}(n)$, an N-chain of factorizations from z to z^{\prime} is a sequence $z_{0}, \ldots, z_{k} \in \mathbb{F}(n)$ such that $z_{0}=z, z_{k}=z^{\prime}$ and $\mathrm{d}\left(z_{i}, z_{i+1}\right) \leq N$ for all i.

The catenary degree of $n, c(n)$, is the minimal $N \in \mathbb{N} \cup\{\infty\}$ such that for any two factorizations $z, z^{\prime} \in \mathbb{F}(n)$, there is an N-chain from z to z^{\prime}.

The catenary degree of $S, c(S)$, is defined by

$$
c(S)=\sup \{c(n) \mid n \in S\} .
$$

Note: If S does not have unique factorization, then $\mathrm{c}(S) \geq 2$ and if $\mathrm{c}(S)=2$, then S is half-factorial.

More Definitions

Given $n \in S$ and $z, z^{\prime} \in \mathbb{F}(n)$, an N-chain of factorizations from z to z^{\prime} is a sequence $z_{0}, \ldots, z_{k} \in \mathbb{F}(n)$ such that $z_{0}=z, z_{k}=z^{\prime}$ and $\mathrm{d}\left(z_{i}, z_{i+1}\right) \leq N$ for all i.

The catenary degree of $n, \mathrm{c}(n)$, is the minimal $N \in \mathbb{N} \cup\{\infty\}$ such that for any two factorizations $z, z^{\prime} \in \mathbb{F}(n)$, there is an N-chain from z to z^{\prime}.

The catenary degree of $S, c(S)$, is defined by

$$
c(S)=\sup \{c(n) \mid n \in S\} .
$$

Note: If S does not have unique factorization, then $\mathrm{c}(S) \geq 2$ and if $\mathrm{c}(S)=2$, then S is half-factorial.

More Definitions

Given $n \in S$ and $z, z^{\prime} \in \mathbb{F}(n)$, an N-chain of factorizations from z to z^{\prime} is a sequence $z_{0}, \ldots, z_{k} \in \mathbb{F}(n)$ such that $z_{0}=z, z_{k}=z^{\prime}$ and $\mathrm{d}\left(z_{i}, z_{i+1}\right) \leq N$ for all i.

The catenary degree of $n, \mathrm{c}(n)$, is the minimal $N \in \mathbb{N} \cup\{\infty\}$ such that for any two factorizations $z, z^{\prime} \in \mathbb{F}(n)$, there is an N-chain from z to z^{\prime}.

The catenary degree of $S, \mathrm{c}(S)$, is defined by

$$
\mathrm{c}(S)=\sup \{\mathrm{c}(n) \mid n \in S\} .
$$

Note: If S does not have unique factorization, then $\mathrm{c}(S) \geq 2$ and if $c(S)=2$, then S is half-factorial.

More Definitions

Given $n \in S$ and $z, z^{\prime} \in \mathbb{F}(n)$, an N-chain of factorizations from z to z^{\prime} is a sequence $z_{0}, \ldots, z_{k} \in \mathbb{F}(n)$ such that $z_{0}=z, z_{k}=z^{\prime}$ and $\mathrm{d}\left(z_{i}, z_{i+1}\right) \leq N$ for all i.

The catenary degree of $n, c(n)$, is the minimal $N \in \mathbb{N} \cup\{\infty\}$ such that for any two factorizations $z, z^{\prime} \in \mathbb{F}(n)$, there is an N-chain from z to z^{\prime}.

The catenary degree of $S, \mathrm{c}(S)$, is defined by

$$
\mathrm{c}(S)=\sup \{\mathrm{c}(n) \mid n \in S\} .
$$

Note: If S does not have unique factorization, then $\mathrm{c}(S) \geq 2$ and if $\mathrm{c}(S)=2$, then S is half-factorial.

Pictorial View

$$
S=\langle 11,36,39\rangle \text { and } n=450 \in S
$$

A Summary: Part I

	$\Gamma=\left\langle n_{1}, \cdots, n_{k}\right\rangle$	$\Gamma=\langle n, n+k, \ldots, n+t k\rangle$
ρ	$\rho(\Gamma)=\frac{n_{k}}{n_{1}}$	$\rho(\Gamma)=\frac{n+t k}{n}$
\mathcal{L}	Modified	Arithmetic
	Kainrath	Sequences
Δ	Eventually Periodic	$\Delta(\Gamma)=\{k\}$
c	Eventually Periodic	$\mathrm{c}(\Gamma)=\left\lceil\frac{n}{t}\right\rceil+k$
ω	Eventually	Eventually Quasi-Linear

Notation

Definition

For a Leamer monoid S_{Γ}^{s} and $x \in \Gamma$, the column at x is the set

$$
\left\{(x, n) \in S_{\Gamma}^{s}: n \geq 1\right\}
$$

If this set is empty, we say that no column exists at x. If a column exists at x, the column at x is said to be finite (resp., infinite) if the column has finite (resp., infinite) cardinality. The height of the finite column at x is

$$
\max \left\{n:(x, n) \in S_{\Gamma}^{s}\right\}
$$

Definition

Notation

Definition

For a Leamer monoid S_{Γ}^{s} and $x \in \Gamma$, the column at x is the set

$$
\left\{(x, n) \in S_{\Gamma}^{s}: n \geq 1\right\}
$$

If this set is empty, we say that no column exists at x. If a column exists at x, the column at x is said to be finite (resp., infinite) if the column has finite (resp., infinite) cardinality. The height of the finite column at x is

$$
\max \left\{n:(x, n) \in S_{\Gamma}^{s}\right\}
$$

Definition

Given a Leamer monoid S_{Γ}^{s}, we use $x_{0}\left(S_{\Gamma}^{s}\right)$ to denote the smallest x such that $(x, 1) \in S_{\Gamma}^{s}$. We denote by $x_{f}\left(S_{\Gamma}^{s}\right)$ the first infinite column of S_{Γ}^{s}, that is, the smallest x such that $(x, n) \in S_{\Gamma}^{s}$ for all $n \geq 1$.

Lemma

Lemma

Let S_{Γ}^{s} be a Leamer monoid.
(a) If $(x, 1) \in S_{\Gamma}^{s}$, then $(x, 1) \in \mathcal{A}\left(S_{\Gamma}^{s}\right)$.
(-) For $n \gg 0,\left(x_{f}, n\right) \in \mathcal{A}\left(S_{\Gamma}^{s}\right)$.
(c) If $(x, n) \in S_{\Gamma}^{s}$, then $\left(x, n^{\prime}\right) \in S_{\Gamma}^{s}$ for all $1 \leq n^{\prime} \leq n$.
(c) If $(x, n-1) \in \mathcal{A}\left(S_{\Gamma}^{s}\right)$ and $(x, n) \in S_{\Gamma}^{s}$ for $n>2$, then $(x, n) \in \mathcal{A}\left(S_{\Gamma}^{s}\right)$.
(e) If $(x, n-1) \in \mathcal{A}\left(S_{\Gamma}^{s}\right)$ and $(x-s, n) \in S_{\Gamma}^{s}$ for $n>2$, then $(x-s, n) \in \mathcal{A}\left(S_{\Gamma}^{s}\right)$.
(a) The column at every $x>\mathcal{F}(\Gamma)$ is infinite.
(B) For all $x>\mathcal{F}(\Gamma)+x_{0}$ and $n \geq 2,(x, n)$ is a reducible element in S_{Γ}^{s}.

Elasticity

Theorem

For any Leamer monoid $S_{\Gamma}^{s}, \rho\left(S_{\Gamma}^{s}\right)=\infty$.

Theorem

Fix a Leamer monoid SF. Let

$$
C=\left\{(x, n) \in S_{\Gamma}^{s} \backslash \mathcal{A}\left(S_{\Gamma}^{s}\right):(x, n+1) \notin S_{\Gamma}^{s} \backslash \mathcal{A}\left(S_{\Gamma}^{s}\right)\right\}
$$

that is, the set of reducible elements which lie in finite or mixed columns and have maximal height. Then $\left|\Delta\left(S_{\Gamma}^{s}\right)\right|<\infty$, and in fact $\max \Delta\left(S_{\Gamma}^{s}\right) \leq n^{*}-1$, where

Elasticity

Theorem

For any Leamer monoid $S_{\Gamma}^{s}, \rho\left(S_{\Gamma}^{s}\right)=\infty$.

Theorem

Fix a Leamer monoid S_{Γ}^{s}. Let

$$
C=\left\{(x, n) \in S_{\Gamma}^{s} \backslash \mathcal{A}\left(S_{\Gamma}^{s}\right):(x, n+1) \notin S_{\ulcorner }^{s} \backslash \mathcal{A}\left(S_{\Gamma}^{s}\right)\right\}
$$

that is, the set of reducible elements which lie in finite or mixed columns and have maximal height. Then $\left|\Delta\left(S_{\Gamma}^{s}\right)\right|<\infty$, and in fact $\max \Delta\left(S_{\Gamma}^{s}\right) \leq n^{*}-1$, where

$$
n^{*}=\max \{n:(x, n) \in C\}
$$

Definition

Definition

The Leamer monoid S_{Γ}^{s} is arithmetical if $\Gamma=\langle m, m+s, \ldots, m+k s\rangle$ for some $m, k \in \mathbb{N}$. For $m, k, s \in \mathbb{N}$ satisfying $1 \leq k \leq m-1$ and $\operatorname{gcd}(m, s)=1$, let $\Gamma(m, k, s)=\langle m, m+s, \ldots, m+k s\rangle$, and let $S_{m, k}^{s}=S_{\Gamma(m, k, s)}^{s}$.

Graphical Example

The Leamer monoid $S_{\Gamma}^{7}=S_{13,7}^{7}$ for $\Gamma=\langle 13,20,27,34,41,48,55,62\rangle$

First Results

Theorem

Fix an arithmetical Leamer monoid $S_{m, k}^{s}$. Then

$$
\Delta\left(S_{m, k}^{s}\right)=\left\{1, \ldots,\left\lfloor\frac{m-2}{k}\right\rfloor+1\right\} .
$$

Corollary

The arithmetical Leamer monoid $S_{m, k}^{s}$ has catenary degree $\left\lfloor\frac{m-2}{k}\right\rfloor+3$.

First Results

Theorem

Fix an arithmetical Leamer monoid $S_{m, k}^{s}$. Then

$$
\Delta\left(S_{m, k}^{s}\right)=\left\{1, \ldots,\left\lfloor\frac{m-2}{k}\right\rfloor+1\right\} .
$$

Corollary

The arithmetical Leamer monoid $S_{m, k}^{s}$ has catenary degree $\left\lfloor\frac{m-2}{k}\right\rfloor+3$.

Omega Function

Definition

Let S be a commutative cancellative monoid. For any nonunit $x \in S$, define $\omega(x)=m$ if m is the smallest positive integer such that whenever x divides $x_{1} \cdots x_{t}$, with $x_{i} \in S$, then there is a set $T \subset\{1,2, \ldots, t\}$ of indices with $|T| \leq m$ such that x divides $\sum_{i \in T} x_{i}$. If no such m exists, then set $\omega(x)=\infty$.

Definition

A product of irreducibles $x_{1} \cdots x_{k}$ is said to be a bullet for n if n divides the product $x_{1} x_{2} \cdots x_{k}$ but does not divide any proper subproduct.

Omega Function

Definition

Let S be a commutative cancellative monoid. For any nonunit $x \in S$, define $\omega(x)=m$ if m is the smallest positive integer such that whenever x divides $x_{1} \cdots x_{t}$, with $x_{i} \in S$, then there is a set $T \subset\{1,2, \ldots, t\}$ of indices with $|T| \leq m$ such that x divides $\sum_{i \in T} x_{i}$. If no such m exists, then set $\omega(x)=\infty$.

Definition

A product of irreducibles $x_{1} \cdots x_{k}$ is said to be a bullet for n if n divides the product $x_{1} x_{2} \cdots x_{k}$ but does not divide any proper subproduct.

More

Proposition

If M is a commutative cancellative monoid and x a nonunit of M, then $\omega(x)=\sup \left\{r \mid x_{1} \cdots x_{r} \in \operatorname{bul}(x)\right.$ where each x_{i} is irreducible in $\left.M\right\}$.

Proposition

If $(x, n) \in S_{5}^{s}$, then (x, n) has a bullet of length $n+1$. Hence,
$\omega((x, n)) \geq n+1$ and no element in a Leamer monoid is prime.

More

Proposition

If M is a commutative cancellative monoid and x a nonunit of M, then

$$
\omega(x)=\sup \left\{r \mid x_{1} \cdots x_{r} \in \operatorname{bul}(x) \text { where each } x_{i} \text { is irreducible in } M\right\} .
$$

Proposition

If $(x, n) \in S_{\Gamma}^{s}$, then (x, n) has a bullet of length $n+1$. Hence, $\omega((x, n)) \geq n+1$ and no element in a Leamer monoid is prime.

More

Proposition

If M is a commutative cancellative monoid and x a nonunit of M, then

$$
\omega(x)=\sup \left\{r \mid x_{1} \cdots x_{r} \in \operatorname{bul}(x) \text { where each } x_{i} \text { is irreducible in } M\right\} .
$$

Proposition

If $(x, n) \in S_{\Gamma}^{s}$, then (x, n) has a bullet of length $n+1$. Hence, $\omega((x, n)) \geq n+1$ and no element in a Leamer monoid is prime.

Omega Formula for Arithemetical Leamer Monoids

Theorem

Let $S_{a, k}^{d}$ be an arithmetical Leamer monoid with $k \geq 2$.
(1) If $(x, n) \in S_{a, k}^{d}$ such that $(x, n) \neq p(a, k)$ for any $p \in \mathbb{N}$, then $\omega((x, n))=\max \left(n+1, m+\left\lfloor\frac{a-2}{k}\right\rfloor+1+\left\lfloor\frac{a+i-1}{a} s\right\rfloor\right)$.
(2) If $(x, n) \in S_{a, k}^{d}$ such that $(x, n)=p(a, k)$ for some $p \in \mathbb{N}$, then $\omega((x, n))=n+1$.

Omega Formula for Arithemetical Leamer Monoids

Theorem

Let $S_{a, k}^{d}$ be an arithmetical Leamer monoid with $k \geq 2$.
(1) If $(x, n) \in S_{a, k}^{d}$ such that $(x, n) \neq p(a, k)$ for any $p \in \mathbb{N}$, then $\omega((x, n))=\max \left(n+1, m+\left\lfloor\frac{a-2}{k}\right\rfloor+1+\left\lfloor\frac{a+i-1}{a} s\right\rfloor\right)$.
(2) If $(x, n) \in S_{a, k}^{d}$ such that $(x, n)=p(a, k)$ for some $p \in \mathbb{N}$, then $\omega((x, n))=n+1$.

A Summary: Part II

	$\Gamma=\left\langle n_{1}, \cdots, n_{k}\right\rangle: S_{\Gamma}^{s}$	$\Gamma=\langle m, m+s, \ldots, m+k s\rangle: S_{m, k}^{s}$
ρ	$\rho\left(S_{\Gamma}^{s}\right)=\infty$	$\rho\left(S_{m, k}^{s}\right)=\infty$
\mathcal{L}	Hortizonal and Vertical	Horizontal and Vertical
	Stability	Stability
Δ	$\left\|\Delta\left(S_{\Gamma}^{s}\right)\right\|<\infty$	$\Delta\left(S_{m, k}^{s}\right)=\left\{1, \ldots,\left\lfloor\frac{m-2}{k}\right\rfloor+3\right\}$
c	$\mathrm{c}\left(S_{\Gamma}^{s}\right)<\infty$	$\mathrm{c}(\Gamma)=\left\lceil\frac{m-2}{k}\right\rceil+3$
ω	$\omega((x, n)) \geq n+1$	See Last Theorem!

