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Why Leamer Monoids?

Conjecture (Huneke-Wiegand)

Let R be a one-dimensional Gorenstein domain. Let M 6= 0 be a finitely
generated R-module, which is not projective. Then the torsion submodule
of M ⊗R HomR(M,R) is non-trivial.

Proposition (Garćıa-Sánchez and Leamer, J. Algebra 2013)

Let Γ be a numerical monoid and K be a field. The monoid algebra K[Γ]
satisfies the Huneke-Wiegand conjecture for monomial ideals generated by
two elements if and only if for each s ∈ N \ Γ, there exists an irreducible
arithmetic sequence of the form {x , x + s, x + 2s} in Γ.
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Introduction

Definition

Given a numerical monoid Γ, s ∈ N \ Γ, define

S s
Γ = {(0, 0)} ∪ {(x , n) : {x , x + s, x + 2s, . . . , x + ns} ⊂ Γ} ⊂ N2.

That is, S s
Γ is the collection of arithmetic sequences of step size s

contained in Γ.

Example

For Γ = 〈7, 10〉 and s = 3, the graph of the Leamer monoid S3
〈7,10〉 is given

below in Figure 2. In this example, Γ is generated by an arithmetic
sequence with step size 3, which is equal to s. The Frobenius number of Γ
(53 in this case) can be easily read off the graph as the rightmost column
absent of any dots.
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The Notation of Factorization Theory
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Figure: The Leamer Monoid S3
〈7,10〉.
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Another Pictorial View
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Figure: The Leamer Monoid S4
〈13,17,22,40〉.
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Even More Notation

Consider factorizations of the form

x = x1 · · · xk = y1 · · · yt

which may not be unique.

If x ∈ M•, then the set of lengths of x is

L(x) = {k ∈ N | x = a1a2 · · · ak where ai ∈ A(M(a, n))}.
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The Notation Continues Coming

Set
`(x) = minL(x) and L(x) = maxL(x).

If L(x) = {n1, . . . , nt} with the ni ’s listed in increasing order, then set

∆(x) = {ni − ni−1 | 2 ≤ i ≤ t}

and
∆(M) =

⋃
1 6=x∈M•

∆(x).

If ∆(M) 6= ∅, then,
min ∆(M) = gcd ∆(M).
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The Elasticity of Factorization

The elasticity of an element x ∈ M•, denoted ρ(x), is given by

ρ(x) = max(L(x))/min(L(x)).

The elasticity of M is then defined as

ρ(M) = sup{ρ(x) | x ∈ M•}.
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More Definitions

For z = (z1, . . . , zp), z ′ = (z ′1, . . . , z
′
p) ∈ Np write

gcd(z , z ′) = (min{z1, z
′
1}, . . . ,min{zp, z ′p}),

and
z

z ′
= z − z ′.

Define

d(z , z ′) = max

{∣∣∣∣ z

gcd(z , z ′)

∣∣∣∣ , ∣∣∣∣ z ′

gcd(z , z ′)

∣∣∣∣} ,
to be the distance between z and z ′. If Z ′ ⊆ Z (s), then set

d(z ,Z ′) = min{d(z , z ′) | z ′ ∈ Z ′}.
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More Definitions

Given n ∈ S and z , z ′ ∈ F(n), an N-chain of factorizations from z to z ′ is
a sequence z0, . . . , zk ∈ F(n) such that z0 = z , zk = z ′ and
d(zi , zi+1) ≤ N for all i .

The catenary degree of n, c(n), is the minimal N ∈ N ∪ {∞} such that for
any two factorizations z , z ′ ∈ F(n), there is an N-chain from z to z ′.

The catenary degree of S , c(S), is defined by

c(S) = sup{c(n) | n ∈ S}.

Note: If S does not have unique factorization, then c(S) ≥ 2 and if
c(S) = 2, then S is half-factorial.
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Pictorial View

S = 〈11, 36, 39〉 and n = 450 ∈ S
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A Summary: Part I

Γ = 〈n1, · · · , nk〉 Γ = 〈n, n + k , . . . , n + tk〉

ρ ρ(Γ) = nk
n1

ρ(Γ) = n+tk
n

L Modified Arithmetic

Kainrath Sequences

∆ Eventually ∆(Γ) = {k}
Periodic

c Eventually c(Γ) =
⌈
n
t

⌉
+ k

Periodic

ω Eventually Eventually

Quasi-Linear Quasi-Linear
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Notation

Definition

For a Leamer monoid S s
Γ and x ∈ Γ, the column at x is the set

{(x , n) ∈ S s
Γ : n ≥ 1}.

If this set is empty, we say that no column exists at x . If a column exists
at x , the column at x is said to be finite (resp., infinite) if the column has
finite (resp., infinite) cardinality. The height of the finite column at x is

max{n : (x , n) ∈ S s
Γ}.

Definition

Given a Leamer monoid S s
Γ, we use x0(S s

Γ) to denote the smallest x such
that (x , 1) ∈ S s

Γ. We denote by xf (S s
Γ) the first infinite column of S s

Γ, that
is, the smallest x such that (x , n) ∈ S s

Γ for all n ≥ 1.

Chapman (Sam Houston State University) September 4, 2018 15 / 24



Notation

Definition

For a Leamer monoid S s
Γ and x ∈ Γ, the column at x is the set

{(x , n) ∈ S s
Γ : n ≥ 1}.

If this set is empty, we say that no column exists at x . If a column exists
at x , the column at x is said to be finite (resp., infinite) if the column has
finite (resp., infinite) cardinality. The height of the finite column at x is

max{n : (x , n) ∈ S s
Γ}.

Definition

Given a Leamer monoid S s
Γ, we use x0(S s

Γ) to denote the smallest x such
that (x , 1) ∈ S s

Γ. We denote by xf (S s
Γ) the first infinite column of S s

Γ, that
is, the smallest x such that (x , n) ∈ S s

Γ for all n ≥ 1.

Chapman (Sam Houston State University) September 4, 2018 15 / 24



Lemma

Lemma

Let S s
Γ be a Leamer monoid.

(a) If (x , 1) ∈ S s
Γ, then (x , 1) ∈ A(S s

Γ).

(b) For n >> 0, (xf , n) ∈ A(S s
Γ).

(c) If (x , n) ∈ S s
Γ, then (x , n′) ∈ S s

Γ for all 1 ≤ n′ ≤ n.

(d) If (x , n − 1) ∈ A(S s
Γ) and (x , n) ∈ S s

Γ for n > 2, then (x , n) ∈ A(S s
Γ).

(e) If (x , n − 1) ∈ A(S s
Γ) and (x − s, n) ∈ S s

Γ for n > 2, then
(x − s, n) ∈ A(S s

Γ).

(f) The column at every x > F(Γ) is infinite.

(g) For all x > F(Γ) + x0 and n ≥ 2, (x , n) is a reducible element in S s
Γ.
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Elasticity

Theorem

For any Leamer monoid S s
Γ, ρ(S s

Γ) =∞.

Theorem

Fix a Leamer monoid S s
Γ. Let

C = {(x , n) ∈ S s
Γ \ A(S s

Γ) : (x , n + 1) /∈ S s
Γ \ A(S s

Γ)}

that is, the set of reducible elements which lie in finite or mixed columns
and have maximal height. Then |∆(S s

Γ)|<∞, and in fact
max ∆(S s

Γ) ≤ n∗ − 1, where

n∗ = max{n : (x , n) ∈ C}.
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Definition

Definition

The Leamer monoid S s
Γ is arithmetical if Γ = 〈m,m + s, . . . ,m + ks〉 for

some m, k ∈ N. For m, k , s ∈ N satisfying 1 ≤ k ≤ m − 1 and
gcd(m, s) = 1, let Γ(m, k, s) = 〈m,m + s, . . . ,m + ks〉, and let
S s
m,k = S s

Γ(m,k,s).
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Graphical Example

20 40 60 80 100

5
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20

The Leamer monoid S7
Γ = S7

13,7 for Γ = 〈13, 20, 27, 34, 41, 48, 55, 62〉
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First Results

Theorem

Fix an arithmetical Leamer monoid S s
m,k . Then

∆(S s
m,k) = {1, . . . , bm−2

k c+ 1}.

Corollary

The arithmetical Leamer monoid S s
m,k has catenary degree bm−2

k c+ 3.
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Omega Function

Definition

Let S be a commutative cancellative monoid. For any nonunit x ∈ S ,
define ω(x) = m if m is the smallest positive integer such that whenever x
divides x1 · · · xt , with xi ∈ S , then there is a set T ⊂ {1, 2, . . . , t} of
indices with |T |≤ m such that x divides

∑
i∈T xi . If no such m exists,

then set ω(x) =∞.

Definition

A product of irreducibles x1 · · · xk is said to be a bullet for n if n divides
the product x1x2 · · · xk but does not divide any proper subproduct.
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More

Proposition

If M is a commutative cancellative monoid and x a nonunit of M, then

ω(x) = sup{r | x1 · · · xr ∈ bul(x) where each xi is irreducible in M}.

Proposition

If (x , n) ∈ S s
Γ, then (x , n) has a bullet of length n + 1. Hence,

ω((x , n)) ≥ n + 1 and no element in a Leamer monoid is prime.
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Omega Formula for Arithemetical Leamer
Monoids

Theorem

Let Sd
a,k be an arithmetical Leamer monoid with k ≥ 2.

1 If (x , n) ∈ Sd
a,k such that (x , n) 6= p(a, k) for any p ∈ N, then

ω((x , n)) = max
(
n + 1,m + ba−2

k c+ 1 + ba+i−1
a sc

)
.

2 If (x , n) ∈ Sd
a,k such that (x , n) = p(a, k) for some p ∈ N, then

ω((x , n)) = n + 1.

Chapman (Sam Houston State University) September 4, 2018 23 / 24



Omega Formula for Arithemetical Leamer
Monoids

Theorem

Let Sd
a,k be an arithmetical Leamer monoid with k ≥ 2.

1 If (x , n) ∈ Sd
a,k such that (x , n) 6= p(a, k) for any p ∈ N, then

ω((x , n)) = max
(
n + 1,m + ba−2

k c+ 1 + ba+i−1
a sc

)
.

2 If (x , n) ∈ Sd
a,k such that (x , n) = p(a, k) for some p ∈ N, then

ω((x , n)) = n + 1.

Chapman (Sam Houston State University) September 4, 2018 23 / 24



A Summary: Part II

Γ = 〈n1, · · · , nk〉 : S s
Γ Γ = 〈m,m + s, . . . ,m + ks〉 : S s

m,k

ρ ρ(S s
Γ) =∞ ρ(S s

m,k) =∞

L Hortizonal and Vertical Horizontal and Vertical

Stability Stability

∆ |∆(S s
Γ)|<∞ ∆(S s

m,k) = {1, . . . , bm−2
k c+ 3}

c c(S s
Γ) <∞ c(Γ) =

⌈
m−2
k

⌉
+ 3

ω ω((x , n)) ≥ n + 1 See Last Theorem!
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