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Motivation

Taken from: P. M. Cohen, Bezout rings and their subrings, Proc.
Cambridge Phil. Soc. 64(1968), 251-264.
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Motivation

We note that Cohen’s maximal condition on principal ideals is equivalent
to the acsending chain condition on principal ideals (a.c.c.p.).

Proposition 1 · 1 is incorrect. While Cohen is correct that (⇐) is trivial to
verify, (⇒) fails.

The first example of an atomic integral domain without the a.c.c.p.
appears in a paper by Anne Grams (Atomic rings and the ascending chain
condition for principal ideals, Math. Proc. Cambridge Philos. Soc.
75(1974), 321–329).
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Grams’ Example

Let P = {p1, p2, . . .} be the ordered list of odd prime numbers. Let F be
any field and M be the additive submonoid of Q≥0, the nonnegative
rationals, generated by {

1

2npn

}
n∈N

.

Let D = F[X ;M] be the monoid ring over the field F. If
S := {f ∈ F[X ;M] : f (0) 6= 0} is a multiplicatively closed subset of D,
then the Grams’ Example is

F[X ;M]S .
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Three Comments About M

Three Comments About M. Set B =
{

1
2npn

}
n∈N

.

Each 1
2mpm

in B cannot be written as a linear combination over N0 of
the remaining elements in B. Thus, each element in B is an atom of
M.

As M is generated by its atoms, M is atomic.

The monoid ideals

1

2
+ M (

1

22
+ M (

1

23
+ M ( · · ·

form an infinite ascending chain of ideals. Hence M does not
satisfy the a.c.c.p.
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Definition

In Grams’ proof, the factorization properties of M play a key role.

Definition

A Puiseux monoid is an additive submonoid of Q≥0.

An interesting observation.

Proposition

There are uncountably many non-isomorphic Puiseux monoids.

This follows from a Theorem of Fuchs that there are uncountably many
non-isomorphic rank-1 torsion-free abelian groups.

Chapman ( Sam Houston State Univeristy, MIT, Biogen ) May 27, 2021 7 / 19



Definition

In Grams’ proof, the factorization properties of M play a key role.

Definition

A Puiseux monoid is an additive submonoid of Q≥0.

An interesting observation.

Proposition

There are uncountably many non-isomorphic Puiseux monoids.

This follows from a Theorem of Fuchs that there are uncountably many
non-isomorphic rank-1 torsion-free abelian groups.

Chapman ( Sam Houston State Univeristy, MIT, Biogen ) May 27, 2021 7 / 19



Definition

In Grams’ proof, the factorization properties of M play a key role.

Definition

A Puiseux monoid is an additive submonoid of Q≥0.

An interesting observation.

Proposition

There are uncountably many non-isomorphic Puiseux monoids.

This follows from a Theorem of Fuchs that there are uncountably many
non-isomorphic rank-1 torsion-free abelian groups.

Chapman ( Sam Houston State Univeristy, MIT, Biogen ) May 27, 2021 7 / 19



Factorization Properties

The usual definitions involving factorization in commutative rings carry
over to monoids in a natural manner.

Definition

Let M be a commutative cancellative monoid.

A nonunit x ∈ M is irreducible (or an atom) if x = yz implies that y
or z is a unit of M. We set A(M) to be the set of atoms of M.

M is atomc if every nonunit of M can be written as a product of
elements from A(M).

M is antimatter if A(M) = ∅.

Chapman ( Sam Houston State Univeristy, MIT, Biogen ) May 27, 2021 8 / 19



Not Everything is Atomic

Unlike M in the Grams’ example, not all Puiseux monoids are atomic.

Example

Let p be a prime number and M be the Puiseux monoid generated by the
terms {

1

pk

}
k∈N

.

In such cases, we use the notation
〈

1
p ,

1
p2
, 1
p3
, . . .

〉
. Here M is not

atomic, as no generator is an atom. Here 1
pk

= p · 1
pk+1 . In fact, M has no

atoms. We call such a Puiseux monoid an antimatter monoid.
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Question

Question A: When is a Puiseux monoid atomic?

Question B: When does a Puiseux monoid satisfy the a.c.c.p.?

Question C: When is a Puiseux monoid antimatter?

Question D: Given an atomic Puiseux monoid, what can we say about its
factorization properties?

We focus on Question A, and give some scattered results along the way to
Questions B, C, D.
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A Simplier Case

The submonoids S ⊆ N under +, known as numerical monoids have
been studied more carefully in these regards.

Numerical Monoids Puiseux Monoids

Always finitely generated May not be finitely generated

Always atomic May not be atomic

Always satisfies a.c.c.p. May not satisfiy a.c.c.p.

Never antimatter May be antimatter

Factorization properties Factorization properties
well investigated not well known
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When are they the same?

It is easy to determine which Puiseux monoids behave like numerical
monoids.

Proposition

A Puiseux monoid is isomorphic to a numerical monoid if and only if it is
finitely generated.

Hence, if a Puiseux monoid M is finitely generated, then

it has a unique minimal set of generators;

it is atomic; its atoms are precisely the unique minimal generating set;

it satisfies the a.c.c.p.
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An Extension

Hence, we focus on the non-finitely generated case.

We can actually extend the last observations beyond the finitely genetated
case.

Proposition

Let M be a Puiseux monoid. The following conditions are equivalent.

1 M contains a minimal set of generators.

2 M contains a unique minimal set of generators.

3 M is atomic.
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An Example

We illustrate the last Proposition with an example.

Example

We use a construction somewhat similar to the Grams’ example. Let

S = { 1

2n
| n ∈ N} and P = {p1, p2, . . .}

be the ordered list of odd prime numbers. Let M be the Puiseux monoid
generated by S ∪ P. We have

each 1
pn

is an atom of M;

no 1
2n can be written as a sum of atoms.

Thus M is a non-atomic monoid with infinitely many atoms.
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The non-finitely generated case

We make another fundamental observation.

Proposition

Let M be a Puiseux monoid. If 0 is not a limit point of M, then M is
atomic.

The proof is straightforward. Assume M is not atomic and construct a
sequence of elements in M which converges to zero.

We note that Grams’ example shows that the converse above does not
hold.

When 0 is a limit point, there is not much that can be said in
general - the atomicity of this subclass of PMs is very complex and
mostly not understood. We illustate this with some additional
examples.
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Cyclic Semirings

Definition

For r ∈ Q>0, let
Sr = 〈rn | n ∈ N〉 .

Sr is the cyclic semiring generated by r . We consider only the additive
structure of Sr .

We completely describe the atomic structure of the Sr monoids. If
r = a

b ∈ Q with gcd(a, b) = 1, then we set n(r) = a and d(r) = b.

Proposition

1 If r ≥ 1, then Sr is atomic and either

r ∈ N and so Sr ∼= N0,
or r 6∈ N and so A(Sr ) = {rn | n ∈ N0}.

2 If r < 1, then

either n(r) = 1 and so Sr is antimatter,
or n(r) 6= 1 and Sr is atomic with A(Sr ) = {rn | n ∈ N0}.
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On the a.c.c.p.

Corollary

For each r ∈ Q ∩ (0, 1) with n(r) 6= 1, the monoid Sr is an atomic monoid
that does not satisfy the a.c.c.p.

Proof.

We consider the principal ideals n(r)rn + Sr for each n ∈ N. Since

n(r)rn = d(r)rn+1 = (d(r)− n(r))rn+1 + n(r)rn+1,

n(r)rn+1 |Sr n(r)rn for every n ∈ N0. Therefore

n(r)rn + Sr ( n(r)rn+1 + Sr

is an ascending chain of principal ideals which never stabilizes.
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A comment on antimatter monoids

Given a Puiseux monoid M, set

gp(M) = {x − y | x , y ∈ M}.

gp(M) is a subgroup of Q. We further set

M̃ = {x ∈ gp(M) | nx ∈ M for some n ∈ N}

to be the root closure of M.

Lemma

Let M be a Puiseux monoid and n = gcd{n(x) | 0 6= x ∈ M}. Then

M̃ = n

〈
1

d(x)
| 0 6= x ∈ M

〉
.
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A comment on antimatter monoids

Proposition

A Puiseux monoid M is not finitely generated if and only if M̃ is
antimatter.

Example

Let P be the set of prime numbers and set M =
〈

1
p | p ∈ P

〉
. As 0 is a

limit point of M, M is not finitely generated. Thus, by the Proposition, M̃
is antimatter. Clearly 1 = gcd{n(x) | 0 6= x ∈ M} and that
{d(x) | 0 6= x ∈ M} is the set of square-free positive integers. Thus

M̃ =

〈
1

n
| n ∈ N is square-free

〉
is antimatter.
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