On the catenary degree of elements in a numerical monoid generated by an arithmetic sequence

Scott Chapman
Sam Houston State University

May 24, 2018

The Student Authors

This talk is based on the work completed under my direction at the 2013 PURE REU at the University of Hawaii at Hilo by the following students.

Marly Corrales, University of Florida
Andrew Miller, Amherst College
Chris Miller, University of California Berkeley
Dhir Patel, Ohio State University

Prologue

This talk is based the paper:
[1] S.T. Chapman, M. Corrales, A. Miller, C. Miller, and D. Patel, The Catenary and Tame Degrees on a Numerical Monoid are Eventually Periodic, J. Aust. Math. Soc. 97(2014), 289-300.
> [2] S.T. Chapman, M. Corrales, A. Miller, C. Miller, and D. Patel, The Catenary Degrees of Elements in Numerical Monoids Generated by Arithmetic Sequences, Comm. Alg. 45(2017), 5443-5452. More information and background on this area can be found in: [3] S. T. Chapman, P. A. García-Sánchez and D. Llena, The catenary and tame degree of numerical semigroups, Forum Math. 21(2009), 117-129
[4] S.T. Chapman, R. Hoyer, and N. Kaplan, Delta sets of numerical monoids are eventually periodic, Aequationes Math. 77(2009), 273-279

Prologue

This talk is based the paper:
[1] S.T. Chapman, M. Corrales, A. Miller, C. Miller, and D. Patel, The Catenary and Tame Degrees on a Numerical Monoid are Eventually Periodic, J. Aust. Math. Soc. 97(2014), 289-300.
[2] S.T. Chapman, M. Corrales, A. Miller, C. Miller, and D. Patel, The Catenary Degrees of Elements in Numerical Monoids Generated by Arithmetic Sequences, Comm. Alg. 45(2017), 5443-5452.

More information and background on this area can be found in:
 [3] S. T. Chapman, P. A. García-Sánchez and D. Llena, The catenary and tame degree of numerical semigroups, Forum Math. 21(2009), 117-129

[4] S.T. Chapman, R. Hoyer, and N. Kaplan, Delta sets of numerical monoids are eventually periodic, Aequationes Math. 77(2009), 273-279

Prologue

This talk is based the paper:
[1] S.T. Chapman, M. Corrales, A. Miller, C. Miller, and D. Patel, The Catenary and Tame Degrees on a Numerical Monoid are Eventually Periodic, J. Aust. Math. Soc. 97(2014), 289-300.
[2] S.T. Chapman, M. Corrales, A. Miller, C. Miller, and D. Patel, The Catenary Degrees of Elements in Numerical Monoids Generated by Arithmetic Sequences, Comm. Alg. 45(2017), 5443-5452.

More information and background on this area can be found in:
[3] S. T. Chapman, P. A. García-Sánchez and D. Llena, The catenary and tame degree of numerical semigroups, Forum Math. 21(2009), 117-129. [4] S.T. Chapman, R. Hoyer, and N. Kaplan, Delta sets of numerical
monoids are eventually periodic, Aequationes Math. $77(2009), 273-279$.

Prologue

This talk is based the paper:
[1] S.T. Chapman, M. Corrales, A. Miller, C. Miller, and D. Patel, The Catenary and Tame Degrees on a Numerical Monoid are Eventually Periodic, J. Aust. Math. Soc. 97(2014), 289-300.
[2] S.T. Chapman, M. Corrales, A. Miller, C. Miller, and D. Patel, The Catenary Degrees of Elements in Numerical Monoids Generated by Arithmetic Sequences, Comm. Alg. 45(2017), 5443-5452.

More information and background on this area can be found in:
[3] S. T. Chapman, P. A. García-Sánchez and D. Llena, The catenary and tame degree of numerical semigroups, Forum Math. 21(2009), 117-129.
[4] S.T. Chapman, R. Hoyer, and N. Kaplan, Delta sets of numerical monoids are eventually periodic, Aequationes Math. 77(2009), 273-279.

Numerical Monoids

Let S be an additive submonoid of $\mathbb{N} \cup\{0\}$. S is called a numerical monoid.

If $\left\{n_{1}, \ldots, n_{t}\right\}$ is a set of elements of S such that every $x \in S$ can be written in the form

$$
x=x_{1} n_{1}+\cdots x_{t} n_{t}
$$

then $\left\{n_{1}, \ldots, n_{t}\right\}$ is called a generating set of S.
This is commonly denoted by

$$
S=\left\langle n_{1}, \ldots, n_{t}\right\rangle .
$$

It follows from Elementary Number Theory that every numerical monoid S possesses a unique minimal set of generators. If $\operatorname{gcd}\{s \mid s \in S\}=1$, then S is called primitive. It again follows easily from Number Theory that every numerical monoid S is isomorphic to a primitive numerical monoid. $\mathbf{\Psi}$

Numerical Monoids

Let S be an additive submonoid of $\mathbb{N} \cup\{0\}$. S is called a numerical monoid.

If $\left\{n_{1}, \ldots, n_{t}\right\}$ is a set of elements of S such that every $x \in S$ can be written in the form

$$
x=x_{1} n_{1}+\cdots x_{t} n_{t}
$$

then $\left\{n_{1}, \ldots, n_{t}\right\}$ is called a generating set of S.
This is commonly denoted by
$S=\left\langle n_{1}, \ldots, n_{t}\right\rangle$.

It follows from Elementary Number Theory that every numerical monoid S
possesses a unique minimal set of generators. If $\operatorname{gcd}\{s \mid s \in S\}=1$, then
S is called primitive. It again follows easily from Number Theory that every numerical monoid S is isomorphic to a primitive numerical monoid. $\mathbf{\Psi}$

Numerical Monoids

Let S be an additive submonoid of $\mathbb{N} \cup\{0\}$. S is called a numerical monoid.

If $\left\{n_{1}, \ldots, n_{t}\right\}$ is a set of elements of S such that every $x \in S$ can be written in the form

$$
x=x_{1} n_{1}+\cdots x_{t} n_{t}
$$

then $\left\{n_{1}, \ldots, n_{t}\right\}$ is called a generating set of S.
This is commonly denoted by

$$
S=\left\langle n_{1}, \ldots, n_{t}\right\rangle
$$

It follows from Elementary Number Theory that every numerical monoid S possesses a unique minimal set of generators. If $\operatorname{gcd}\{s \mid s \in S\}=1$, then S is called primitive. It again follows easily from Number Theory that every numerical monoid S is isomorphic to a primitive numerical monoid. $\mathbf{\Psi}$

Numerical Monoids

Let S be an additive submonoid of $\mathbb{N} \cup\{0\}$. S is called a numerical monoid.

If $\left\{n_{1}, \ldots, n_{t}\right\}$ is a set of elements of S such that every $x \in S$ can be written in the form

$$
x=x_{1} n_{1}+\cdots x_{t} n_{t}
$$

then $\left\{n_{1}, \ldots, n_{t}\right\}$ is called a generating set of S.
This is commonly denoted by

$$
S=\left\langle n_{1}, \ldots, n_{t}\right\rangle
$$

It follows from Elementary Number Theory that every numerical monoid S possesses a unique minimal set of generators. If $\operatorname{gcd}\{s \mid s \in S\}=1$, then S is called primitive. It again follows easily from Number Theory that every numerical monoid S is isomorphic to a primitive numerical monoid. \mathbb{S}_{H}

Introduction

Let S be a numerical monoid minimally generated by $\left\{n_{1}, \ldots, n_{p}\right\}$. Consider the monoid homomorphism

$$
\varphi: \mathbb{N}^{p} \rightarrow S, \varphi\left(a_{1}, \ldots, a_{p}\right)=a_{1} n_{1}+\cdots+a_{p} n_{p}
$$

known as the factorization morphism of S.
The set of factorizations of an element $n \in S$ is

$$
\mathbb{F}(n)=\varphi^{-1}(n)=\left\{\left(a_{1}, \ldots, a_{p}\right) \in \mathbb{N}^{p} \mid n=a_{1} n_{1}+\cdots+a_{p} n_{p}\right\} .
$$

Let $\left(a_{1}, \ldots, a_{p}\right) \in \mathbb{F}(n)$. The length of the factorization $a=\left(a_{1}, \ldots, a_{p}\right)$ is
$|a|=a_{1}+\cdots+a_{p}$. Thus we also consider

$$
\mathcal{L}(n)=\left\{|a| \mid a=\left(a_{1}, \ldots, a_{p}\right) \text { with } n=a_{1} n_{1}+\cdots+a_{p} n_{p}\right\} .
$$

Introduction

Let S be a numerical monoid minimally generated by $\left\{n_{1}, \ldots, n_{p}\right\}$. Consider the monoid homomorphism

$$
\varphi: \mathbb{N}^{p} \rightarrow S, \varphi\left(a_{1}, \ldots, a_{p}\right)=a_{1} n_{1}+\cdots+a_{p} n_{p}
$$

known as the factorization morphism of S.
The set of factorizations of an element $n \in S$ is

$$
\mathbb{F}(n)=\varphi^{-1}(n)=\left\{\left(a_{1}, \ldots, a_{p}\right) \in \mathbb{N}^{p} \mid n=a_{1} n_{1}+\cdots+a_{p} n_{p}\right\}
$$

Let $\left(a_{1}, \ldots, a_{p}\right) \in \mathbb{F}(n)$. The length of the factorization $a=\left(a_{1}, \ldots, a_{p}\right)$ is
$|a|=a_{1}+\cdots+a_{p}$. Thus we also consider

$$
\mathcal{L}(n)=\left\{|a| \mid a=\left(a_{1}, \ldots, a_{p}\right) \text { with } n=a_{1} n_{1}+\cdots+a_{p} n_{p}\right\} .
$$

Introduction

Let S be a numerical monoid minimally generated by $\left\{n_{1}, \ldots, n_{p}\right\}$. Consider the monoid homomorphism

$$
\varphi: \mathbb{N}^{p} \rightarrow S, \varphi\left(a_{1}, \ldots, a_{p}\right)=a_{1} n_{1}+\cdots+a_{p} n_{p}
$$

known as the factorization morphism of S.
The set of factorizations of an element $n \in S$ is

$$
\mathbb{F}(n)=\varphi^{-1}(n)=\left\{\left(a_{1}, \ldots, a_{p}\right) \in \mathbb{N}^{p} \mid n=a_{1} n_{1}+\cdots+a_{p} n_{p}\right\}
$$

Let $\left(a_{1}, \ldots, a_{p}\right) \in \mathbb{F}(n)$. The length of the factorization $a=\left(a_{1}, \ldots, a_{p}\right)$ is $|a|=a_{1}+\cdots+a_{p}$. Thus we also consider

$$
\mathcal{L}(n)=\left\{|a| \mid a=\left(a_{1}, \ldots, a_{p}\right) \text { with } n=a_{1} n_{1}+\cdots+a_{p} n_{p}\right\} .
$$

The Notation of Factorization Theory

Throughout, we assume that M is a commutative cancellative monoid. Unless otherwise noted, we write the operation of M multiplicatively and hence represent its identity element by 1_{M}.

We use the standard notation of divisibility theory; if x and y are in M and there exists c in M with $c x=y$, then $x \mid y$

Denote by

$$
M^{\times}=\left\{u \in M \mid u v=1_{M} \text { for some } v \in M\right\}
$$

the set of units of M. The irreducibles (or atoms) of M are denoted $\mathcal{A}(M)$, where

$$
\mathcal{A}(M)=\left\{x \in M \backslash M^{\times} \mid x=r s\right. \text { with }
$$

The Notation of Factorization Theory

Throughout, we assume that M is a commutative cancellative monoid. Unless otherwise noted, we write the operation of M multiplicatively and hence represent its identity element by 1_{M}.

We use the standard notation of divisibility theory; if x and y are in M and there exists c in M with $c x=y$, then $x \mid y$.

Denote by

$$
M^{\times}=\left\{u \in M \mid u v=1_{M} \text { for some } v \in M\right\}
$$

the set of units of M. The irreducibles (or atoms) of M are denoted $\mathcal{A}(M)$, where

$$
\mathcal{A}(M)=\left\{x \in M \backslash M^{\times} \mid x=r s\right. \text { with }
$$

The Notation of Factorization Theory

Throughout, we assume that M is a commutative cancellative monoid. Unless otherwise noted, we write the operation of M multiplicatively and hence represent its identity element by 1_{M}.

We use the standard notation of divisibility theory; if x and y are in M and there exists c in M with $c x=y$, then $x \mid y$.

Denote by

$$
M^{\times}=\left\{u \in M \mid u v=1_{M} \text { for some } v \in M\right\}
$$

the set of units of M. The irreducibles (or atoms) of M are denoted $\mathcal{A}(M)$, where

$$
\mathcal{A}(M)=\left\{x \in M \backslash M^{\times} \mid x=r s\right. \text { with }
$$

$$
\left.r, s \in M \text { implies } r \in M^{\times} \text {or } s \in M^{\times}\right\} .
$$

Notation

The monoid M is atomic if every element of $M \backslash M^{\times}=M^{\bullet}$ posses a factorization into elements of $\mathcal{A}(M)$.

Two elements x and y in $\mathcal{A}(M)$ are called associates if there exists a unit $u \in M^{\times}$such that $x=u y$. If x and y are associates, then we write $x \simeq y$.

Notation

The monoid M is atomic if every element of $M \backslash M^{\times}=M^{\bullet}$ posses a factorization into elements of $\mathcal{A}(M)$.

Two elements x and y in $\mathcal{A}(M)$ are called associates if there exists a unit $u \in M^{\times}$such that $x=u y$. If x and y are associates, then we write $x \simeq y$.

Notation

The monoid M is atomic if every element of $M \backslash M^{\times}=M^{\bullet}$ posses a factorization into elements of $\mathcal{A}(M)$.

Two elements x and y in $\mathcal{A}(M)$ are called associates if there exists a unit $u \in M^{\times}$such that $x=u y$. If x and y are associates, then we write $x \simeq y$.

Even More Notation

Consider factorizations of the form

$$
x=x_{1} \cdots x_{k}=y_{1} \cdots y_{t}
$$

which may not be unique.
If $x \in M^{\circ}$, then the set of lengths of x is

$$
\mathcal{L}(x)=\left\{k \in \mathbb{N} \mid x=a_{1} a_{2} \cdots a_{k} \text { where } a_{i} \in \mathcal{A}(M(a, n))\right\} .
$$

Even More Notation

Consider factorizations of the form

$$
x=x_{1} \cdots x_{k}=y_{1} \cdots y_{t}
$$

which may not be unique.
If $x \in M^{\bullet}$, then the set of lengths of x is

$$
\mathcal{L}(x)=\left\{k \in \mathbb{N} \mid x=a_{1} a_{2} \cdots a_{k} \text { where } a_{i} \in \mathcal{A}(M(a, n))\right\} .
$$

The Notation Continues Coming

Set

$$
\ell(x)=\min \mathcal{L}(x) \text { and } L(x)=\max \mathcal{L}(x)
$$

If $\mathcal{L}(x)=\left\{n_{1}, \ldots, n_{t}\right\}$ with the n_{i} 's listed in increasing order, then set

$$
\Delta(x)=\left\{n_{i}-n_{i-1} \mid 2 \leq i \leq t\right\}
$$

and

$$
\Delta(M)=\bigcup_{1 \neq x \in M^{\bullet}} \Delta(x)
$$

If $\Delta(M) \neq \emptyset$, then,
$\min \Delta(M)=\operatorname{gcd} \Delta(M)$.

The Notation Continues Coming

Set

$$
\ell(x)=\min \mathcal{L}(x) \text { and } L(x)=\max \mathcal{L}(x)
$$

If $\mathcal{L}(x)=\left\{n_{1}, \ldots, n_{t}\right\}$ with the n_{i} 's listed in increasing order, then set

$$
\Delta(x)=\left\{n_{i}-n_{i-1} \mid 2 \leq i \leq t\right\}
$$

and

$$
\Delta(M)=\bigcup_{1 \neq x \in M^{\bullet}} \Delta(x)
$$

If $\Delta(M) \neq \emptyset$, then,

$$
\min \Delta(M)=\operatorname{gcd} \Delta(M)
$$

The Elasticity of Factorization

The elasticity of an element $x \in M^{\bullet}$, denoted $\rho(x)$, is given by

$$
\rho(x)=\max (\mathcal{L}(x)) / \min (\mathcal{L}(x)) .
$$

The elasticity of M is then defined as

$$
\rho(M)=\sup \left\{\rho(x) \mid x \in M^{\bullet}\right\} .
$$

The Elasticity of Factorization

The elasticity of an element $x \in M^{\bullet}$, denoted $\rho(x)$, is given by

$$
\rho(x)=\max (\mathcal{L}(x)) / \min (\mathcal{L}(x)) .
$$

The elasticity of M is then defined as

$$
\rho(M)=\sup \left\{\rho(x) \mid x \in M^{\bullet}\right\}
$$

The Elasticity of Factorization

The elasticity of an element $x \in M^{\bullet}$, denoted $\rho(x)$, is given by

$$
\rho(x)=\max (\mathcal{L}(x)) / \min (\mathcal{L}(x)) .
$$

The elasticity of M is then defined as

$$
\rho(M)=\sup \left\{\rho(x) \mid x \in M^{\bullet}\right\}
$$

What is known?

Much is known about the factorization properties of numerical monoids.

- If $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, then $\rho(S)=\frac{n_{k}}{n_{1}}$
- Many results are known about $\Delta(S)$, one of the nicest being the following.

Theorem

If $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ is a primitive numerical monoid, with
$n_{1}<n_{2}<\cdots<n_{k}$, then for all $x \geq 2 k n_{2} n_{k}^{2}$ we have $\Delta(x)=\Delta\left(x+n_{1} n_{k}\right)$.

What is known?

Much is known about the factorization properties of numerical monoids.

- If $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, then $\rho(S)=\frac{n_{k}}{n_{1}}$.
- Many results are known about $\Delta(S)$, one of the nicest being the following.

Theorem

If $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ is a primitive numerical monoid, with $n_{1}<n_{2}<\cdots<n_{k}$, then for all $x \geq 2 k n_{2} n_{k}^{2}$ we have $\Delta(x)=\Delta\left(x+n_{1} n_{k}\right)$.

What is known?

Much is known about the factorization properties of numerical monoids.

- If $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, then $\rho(S)=\frac{n_{k}}{n_{1}}$.
- Many results are known about $\Delta(S)$, one of the nicest being the following.

Theorem

If $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ is a primitive numerical monoid, with $n_{1}<n_{2}<\cdots<n_{k}$, then for all $x \geq 2 k n_{2} n_{k}^{2}$ we have $\Delta(x)=\Delta\left(x+n_{1} n_{k}\right)$.

What is known?

Much is known about the factorization properties of numerical monoids.

- If $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, then $\rho(S)=\frac{n_{k}}{n_{1}}$.
- Many results are known about $\Delta(S)$, one of the nicest being the following.

Theorem

If $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ is a primitive numerical monoid, with $n_{1}<n_{2}<\cdots<n_{k}$, then for all $x \geq 2 k n_{2} n_{k}^{2}$ we have $\Delta(x)=\Delta\left(x+n_{1} n_{k}\right)$.

More Definitions

For $z=\left(z_{1}, \ldots, z_{p}\right), z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{p}^{\prime}\right) \in \mathbb{N}^{p}$ write

$$
\operatorname{gcd}\left(z, z^{\prime}\right)=\left(\min \left\{z_{1}, z_{1}^{\prime}\right\}, \ldots, \min \left\{z_{p}, z_{p}^{\prime}\right\}\right)
$$

Define

to be the distance between z and z^{\prime}. If $Z^{\prime} \subseteq Z(s)$, then set

$$
d\left(z, z^{\prime}\right)=\min \left\{d\left(z, z^{\prime}\right) \mid z^{\prime} \in z^{\prime}\right\} .
$$

More Definitions

For $z=\left(z_{1}, \ldots, z_{p}\right), z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{p}^{\prime}\right) \in \mathbb{N}^{p}$ write

$$
\operatorname{gcd}\left(z, z^{\prime}\right)=\left(\min \left\{z_{1}, z_{1}^{\prime}\right\}, \ldots, \min \left\{z_{p}, z_{p}^{\prime}\right\}\right)
$$

and

$$
\frac{z}{z^{\prime}}=z-z^{\prime}
$$

Define

to be the distance between z and z^{\prime}. If $Z^{\prime} \subseteq Z(s)$, then set

$$
d\left(z, z^{\prime}\right)=\min \left\{d\left(z, z^{\prime}\right) \mid z^{\prime} \in z^{\prime}\right\} .
$$

More Definitions

For $z=\left(z_{1}, \ldots, z_{p}\right), z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{p}^{\prime}\right) \in \mathbb{N}^{p}$ write

$$
\operatorname{gcd}\left(z, z^{\prime}\right)=\left(\min \left\{z_{1}, z_{1}^{\prime}\right\}, \ldots, \min \left\{z_{p}, z_{p}^{\prime}\right\}\right)
$$

and

$$
\frac{z}{z^{\prime}}=z-z^{\prime}
$$

Define

$$
\mathrm{d}\left(z, z^{\prime}\right)=\max \left\{\left|\frac{z}{\operatorname{gcd}\left(z, z^{\prime}\right)}\right|,\left|\frac{z^{\prime}}{\operatorname{gcd}\left(z, z^{\prime}\right)}\right|\right\},
$$

to be the distance between z and z^{\prime}. If $Z^{\prime} \subseteq Z(s)$, then set

More Definitions

For $z=\left(z_{1}, \ldots, z_{p}\right), z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{p}^{\prime}\right) \in \mathbb{N}^{p}$ write

$$
\operatorname{gcd}\left(z, z^{\prime}\right)=\left(\min \left\{z_{1}, z_{1}^{\prime}\right\}, \ldots, \min \left\{z_{p}, z_{p}^{\prime}\right\}\right)
$$

and

$$
\frac{z}{z^{\prime}}=z-z^{\prime}
$$

Define

$$
\mathrm{d}\left(z, z^{\prime}\right)=\max \left\{\left|\frac{z}{\operatorname{gcd}\left(z, z^{\prime}\right)}\right|,\left|\frac{z^{\prime}}{\operatorname{gcd}\left(z, z^{\prime}\right)}\right|\right\},
$$

to be the distance between z and z^{\prime}. If $Z^{\prime} \subseteq Z(s)$, then set

$$
d\left(z, Z^{\prime}\right)=\min \left\{d\left(z, z^{\prime}\right) \mid z^{\prime} \in Z^{\prime}\right\} .
$$

The Distance is Amazing

The distance function acts as a metric. The following for a numerical monoid can easily be shown (and are in fact true in general).

Theorem
Let z_{1}, z_{2} and z_{3} be factorizations of x in a numerical monoid S.

1. $\mathrm{d}\left(z_{1}, z_{2}\right)=0$ if and only if $z_{1}=z_{2}$.
2. $\mathrm{d}\left(z_{1}, z_{2}\right)=\mathrm{d}\left(z_{2}, z_{1}\right)$
3. $d\left(z_{1}, z_{2}\right) \leq d\left(z_{1}, z_{3}\right)+d\left(z_{3}, z_{2}\right)$
4. $\mathrm{d}\left(z_{3} z_{1}, z_{3} z_{2}\right)=\mathrm{d}\left(z_{1}, z_{2}\right)$
5. $d\left(z_{1}^{k}, z_{2}^{k}\right)=k d\left(z_{1}, z_{2}\right)$

The Distance is Amazing

The distance function acts as a metric. The following for a numerical monoid can easily be shown (and are in fact true in general).

Theorem

Let z_{1}, z_{2} and z_{3} be factorizations of x in a numerical monoid S.

1. $\mathrm{d}\left(z_{1}, z_{2}\right)=0$ if and only if $z_{1}=z_{2}$.
2. $\mathrm{d}\left(z_{1}, z_{2}\right)=\mathrm{d}\left(z_{2}, z_{1}\right)$.
3. $\mathrm{d}\left(z_{1}, z_{2}\right) \leq \mathrm{d}\left(z_{1}, z_{3}\right)+\mathrm{d}\left(z_{3}, z_{2}\right)$.
4. $\mathrm{d}\left(z_{3} z_{1}, z_{3} z_{2}\right)=\mathrm{d}\left(z_{1}, z_{2}\right)$.
5. $\mathrm{d}\left(z_{1}^{k}, z_{2}^{k}\right)=k \mathrm{~d}\left(z_{1}, z_{2}\right)$.

More Definitions

Given $n \in S$ and $z, z^{\prime} \in \mathbb{F}(n)$, an N-chain of factorizations from z to z^{\prime} is a sequence $z_{0}, \ldots, z_{k} \in \mathbb{F}(n)$ such that $z_{0}=z, z_{k}=z^{\prime}$ and $\mathrm{d}\left(z_{i}, z_{i+1}\right) \leq N$ for all i.

The catenary degree of $n, c(n)$, is the minimal $N \in \mathbb{N} \cup\{\infty\}$ such that for any two factorizations $z, z^{\prime} \in \mathbb{F}(n)$, there is an N-chain from z to z^{\prime}.

The catenary degree of $S, c(S)$, is defined by

$$
c(S)=\sup \{c(n) \mid n \in S\} .
$$

Note: If S does not have unique factorization, then $\mathrm{c}(S) \geq 2$ and if $\mathrm{c}(S)=2$, then S is half-factorial.

More Definitions

Given $n \in S$ and $z, z^{\prime} \in \mathbb{F}(n)$, an N-chain of factorizations from z to z^{\prime} is a sequence $z_{0}, \ldots, z_{k} \in \mathbb{F}(n)$ such that $z_{0}=z, z_{k}=z^{\prime}$ and $\mathrm{d}\left(z_{i}, z_{i+1}\right) \leq N$ for all i.

The catenary degree of $n, \mathrm{c}(n)$, is the minimal $N \in \mathbb{N} \cup\{\infty\}$ such that for any two factorizations $z, z^{\prime} \in \mathbb{F}(n)$, there is an N-chain from z to z^{\prime}.

The catenary degree of $S, c(S)$, is defined by

$$
c(S)=\sup \{c(n) \mid n \in S\} .
$$

Note: If S does not have unique factorization, then $\mathrm{c}(S) \geq 2$ and if $\mathrm{c}(S)=2$, then S is half-factorial.

More Definitions

Given $n \in S$ and $z, z^{\prime} \in \mathbb{F}(n)$, an N-chain of factorizations from z to z^{\prime} is a sequence $z_{0}, \ldots, z_{k} \in \mathbb{F}(n)$ such that $z_{0}=z, z_{k}=z^{\prime}$ and $\mathrm{d}\left(z_{i}, z_{i+1}\right) \leq N$ for all i.

The catenary degree of $n, \mathrm{c}(n)$, is the minimal $N \in \mathbb{N} \cup\{\infty\}$ such that for any two factorizations $z, z^{\prime} \in \mathbb{F}(n)$, there is an N-chain from z to z^{\prime}.

The catenary degree of $S, \mathrm{c}(S)$, is defined by

$$
\mathrm{c}(S)=\sup \{\mathrm{c}(n) \mid n \in S\} .
$$

Note: If S does not have unique factorization, then $\mathrm{c}(S) \geq 2$ and if $c(S)=2$, then S is half-factorial.

More Definitions

Given $n \in S$ and $z, z^{\prime} \in \mathbb{F}(n)$, an N-chain of factorizations from z to z^{\prime} is a sequence $z_{0}, \ldots, z_{k} \in \mathbb{F}(n)$ such that $z_{0}=z, z_{k}=z^{\prime}$ and $\mathrm{d}\left(z_{i}, z_{i+1}\right) \leq N$ for all i.

The catenary degree of $n, c(n)$, is the minimal $N \in \mathbb{N} \cup\{\infty\}$ such that for any two factorizations $z, z^{\prime} \in \mathbb{F}(n)$, there is an N-chain from z to z^{\prime}.

The catenary degree of $S, \mathrm{c}(S)$, is defined by

$$
\mathrm{c}(S)=\sup \{\mathrm{c}(n) \mid n \in S\} .
$$

Note: If S does not have unique factorization, then $\mathrm{c}(S) \geq 2$ and if $\mathrm{c}(S)=2$, then S is half-factorial.

Pictorial View

$$
S=\langle 11,36,39\rangle \text { and } n=450 \in S
$$

Comments

- There is a method to compute the catenary degree of a numerical monoid. In general, it is difficult to apply.
- The GAP Numerical Monoid Package can compute both the catenary degree of an element in a Numerical Monoid, and the catenary degree of the entire monoid.

```
Theorem
If S={\mp@subsup{n}{1}{},\cdots,\mp@subsup{n}{k}{}\rangle\mathrm{ is a numerical monoid, then the sequence}⿻土㇒
{c(s)}s\inS
is eventually periodic with fundamental period a divisor of L.
```


Comments

- There is a method to compute the catenary degree of a numerical monoid. In general, it is difficult to apply.
- The GAP Numerical Monoid Package can compute both the catenary degree of an element in a Numerical Monoid, and the catenary degree of the entire monoid.

Theorem
 If $S=\left\langle n_{1}, \cdots, n_{k}\right\rangle$ is a numerical monoid, then the sequence
 \square
 is eventually periodic with fundamental period a divisor of L.

Comments

- There is a method to compute the catenary degree of a numerical monoid. In general, it is difficult to apply.
- The GAP Numerical Monoid Package can compute both the catenary degree of an element in a Numerical Monoid, and the catenary degree of the entire monoid.

Theorem

If $S=\left\langle n_{1}, \cdots, n_{k}\right\rangle$ is a numerical monoid, then the sequence

$$
\{c(s)\}_{s \in S}
$$

is eventually periodic with fundamental period a divisor of L.

Monoids Generated by Arithmetic Sequences

Theorem

(Chapman, Garcia-Sanchez, Llena Forum Math. 21(2009)) Let $S=\langle a, a+d, \ldots, a+k d\rangle$ where a, d, and k are positive integers, $\operatorname{gcd}(a, d)=1$, and $1 \leq k \leq a-1$. Then

$$
c(S)=\left\lceil\frac{a}{k}\right\rceil+d
$$

Question

For a numerical monoid S as above, what is the set

Monoids Generated by Arithmetic Sequences

Theorem

(Chapman, Garcia-Sanchez, Llena Forum Math. 21(2009)) Let $S=\langle a, a+d, \ldots, a+k d\rangle$ where a, d, and k are positive integers, $\operatorname{gcd}(a, d)=1$, and $1 \leq k \leq a-1$. Then

$$
c(S)=\left\lceil\frac{a}{k}\right\rceil+d
$$

Question

For a numerical monoid S as above, what is the set

$$
\{c(s) \mid s \in S\} ?
$$

Base Case

Remark

If $S=\langle a, b\rangle$ with $\operatorname{gcd}(a, b)=1$ and $a<b$, then moving from one factorization to another is merely an application of the rule

$$
\underbrace{b+\cdots+b}_{a \text { times }}=\underbrace{a+\cdots+a}_{b \text { times }}
$$

Thus the catenary degree of an element in S is either 0 or b, and can be described as follows.

$$
c(s)= \begin{cases}0 & \text { if } s<a b \\ b & \text { if } s=a b \\ 0 & \text { if } a b<s<2 a b-a-b \text { and } s-a b \notin\langle a, b\rangle \\ b & \text { if } a b<s<2 a b-a-b \text { and } s-a b \in\langle a, b\rangle \\ 0 & \text { if } s=2 a b-a-b \\ b & \text { if } 2 a b-a-b<s .\end{cases}
$$

Main Result

Theorem

Given $S=\langle a, a+d \ldots a+k d\rangle$, where $\operatorname{gcd}(a, d)=1,1<k<a$, and $s \in S$, then

$$
c(s)= \begin{cases}0 & \text { if }|Z(s)|=1 \\ 2 & \text { if }|Z(s)|>1 \text { and }|\mathcal{L}(s)|=1 \\ \left\lceil\frac{a}{k}\right\rceil+d & \text { if }|\mathcal{L}(s)|>1\end{cases}
$$

Side Observation

Theorem

If S is as above and $s \in S$ with $s>a \cdot c(S)+\mathcal{F}(S)$, then $c(s)=c(S)$.
Thus the sequence $\{c(s)\}_{s \in S}$ is eventually constant.

Definition

If S is as above and $s \in S$ is the biggest element in S such that $c(s) \neq c(S)$, then we call s the dissonance of S and we denote it by $\operatorname{dis}(S)=s$

Theorem

If S is as above, then
\square

Side Observation

Theorem

If S is as above and $s \in S$ with $s>a \cdot c(S)+\mathcal{F}(S)$, then $c(s)=c(S)$.
Thus the sequence $\{c(s)\}_{s \in S}$ is eventually constant.

Definition

If S is as above and $s \in S$ is the biggest element in S such that $c(s) \neq c(S)$, then we call s the dissonance of S and we denote it by $\operatorname{dis}(S)=s$.

Theorem

If S is as above, then

\square

Side Observation

Theorem

If S is as above and $s \in S$ with $s>a \cdot c(S)+\mathcal{F}(S)$, then $c(s)=c(S)$. Thus the sequence $\{c(s)\}_{s \in S}$ is eventually constant.

Definition

If S is as above and $s \in S$ is the biggest element in S such that $c(s) \neq c(S)$, then we call s the dissonance of S and we denote it by $\operatorname{dis}(S)=s$.

Theorem

If S is as above, then

$$
\begin{aligned}
& \operatorname{dis}(S)= \\
& \begin{cases}a \cdot c(S)+\mathcal{F}(S) & \text { if } 1 \leq k<2+[a-1 \bmod k]+[a-2 \bmod k] \\
a \cdot c(S)+\mathcal{F}(S)-a & \text { if } k \geq 2+[a-1 \bmod k]+[a-2 \bmod k]\end{cases}
\end{aligned}
$$

