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Prologue
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Numerical Monoids

Let S be an additive submonoid of N ∪ {0}. S is called a numerical
monoid.

If {n1, . . . , nt} is a set of elements of S such that every x ∈ S can be
written in the form

x = x1n1 + · · · xtnt
then {n1, . . . , nt} is called a generating set of S .

This is commonly denoted by

S = 〈n1, . . . , nt〉.

It follows from Elementary Number Theory that every numerical monoid S
possesses a unique minimal set of generators. If gcd{ s | s ∈ S} = 1, then
S is called primitive. It again follows easily from Number Theory that
every numerical monoid S is isomorphic to a primitive numerical monoid.
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Introduction

Let S be a numerical monoid minimally generated by {n1, . . . , np}.
Consider the monoid homomorphism

ϕ : Np → S , ϕ(a1, . . . , ap) = a1n1 + · · ·+ apnp,

known as the factorization morphism of S .
The set of factorizations of an element n ∈ S is

F(n) = ϕ−1(n) = {(a1, . . . , ap) ∈ Np | n = a1n1 + · · ·+ apnp}.

Let (a1, . . . , ap) ∈ F(n). The length of the factorization a = (a1, . . . , ap) is
|a|= a1 + · · ·+ ap. Thus we also consider

L(n) = { |a| | a = (a1, . . . , ap) with n = a1n1 + · · ·+ apnp}.
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The Notation of Factorization Theory

Throughout, we assume that M is a commutative cancellative monoid.
Unless otherwise noted, we write the operation of M multiplicatively and
hence represent its identity element by 1M .

We use the standard notation of divisibility theory; if x and y are in M and
there exists c in M with cx = y , then x | y .

Denote by
M× = {u ∈ M | uv = 1M for some v ∈ M}

the set of units of M. The irreducibles (or atoms) of M are denoted
A(M), where

A(M) = {x ∈ M\M× | x = rs with

r , s ∈ M implies r ∈ M× or s ∈ M×}.
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Notation

The monoid M is atomic if every element of M\M× = M• posses a
factorization into elements of A(M).

Two elements x and y in A(M) are called associates if there exists a unit
u ∈ M× such that x = uy . If x and y are associates, then we write x ' y .
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Even More Notation

Consider factorizations of the form

x = x1 · · · xk = y1 · · · yt

which may not be unique.

If x ∈ M•, then the set of lengths of x is

L(x) = {k ∈ N | x = a1a2 · · · ak where ai ∈ A(M(a, n))}.
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The Notation Continues Coming

Set
`(x) = minL(x) and L(x) = maxL(x).

If L(x) = {n1, . . . , nt} with the ni ’s listed in increasing order, then set

∆(x) = {ni − ni−1 | 2 ≤ i ≤ t}

and
∆(M) =

⋃
1 6=x∈M•

∆(x).

If ∆(M) 6= ∅, then,
min ∆(M) = gcd ∆(M).
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The Elasticity of Factorization

The elasticity of an element x ∈ M•, denoted ρ(x), is given by

ρ(x) = max(L(x))/min(L(x)).

The elasticity of M is then defined as

ρ(M) = sup{ρ(x) | x ∈ M•}.
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What is known?

Much is known about the factorization properties of numerical monoids.

If S = 〈n1, . . . , nk〉, then ρ(S) = nk
n1

.

Many results are known about ∆(S), one of the nicest being the
following.

Theorem

If S = 〈n1, . . . , nk〉 is a primitive numerical monoid, with
n1 < n2 < · · · < nk , then for all x ≥ 2kn2n

2
k we have ∆(x) = ∆(x + n1nk).
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More Definitions

For z = (z1, . . . , zp), z ′ = (z ′1, . . . , z
′
p) ∈ Np write

gcd(z , z ′) = (min{z1, z ′1}, . . . ,min{zp, z ′p}),

and
z

z ′
= z − z ′.

Define

d(z , z ′) = max

{∣∣∣∣ z

gcd(z , z ′)

∣∣∣∣ , ∣∣∣∣ z ′

gcd(z , z ′)

∣∣∣∣} ,
to be the distance between z and z ′. If Z ′ ⊆ Z (s), then set

d(z ,Z ′) = min{d(z , z ′) | z ′ ∈ Z ′}.
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The Distance is Amazing

The distance function acts as a metric. The following for a numerical
monoid can easily be shown (and are in fact true in general).

Theorem

Let z1, z2 and z3 be factorizations of x in a numerical monoid S .

1. d(z1, z2) = 0 if and only if z1 = z2.

2. d(z1, z2) = d(z2, z1).

3. d(z1, z2) ≤ d(z1, z3) + d(z3, z2).

4. d(z3z1, z3z2) = d(z1, z2).

5. d(zk1 , z
k
2 ) = kd(z1, z2).
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More Definitions

Given n ∈ S and z , z ′ ∈ F(n), an N-chain of factorizations from z to z ′ is
a sequence z0, . . . , zk ∈ F(n) such that z0 = z , zk = z ′ and
d(zi , zi+1) ≤ N for all i .

The catenary degree of n, c(n), is the minimal N ∈ N ∪ {∞} such that for
any two factorizations z , z ′ ∈ F(n), there is an N-chain from z to z ′.

The catenary degree of S , c(S), is defined by

c(S) = sup{c(n) | n ∈ S}.

Note: If S does not have unique factorization, then c(S) ≥ 2 and if
c(S) = 2, then S is half-factorial.
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Pictorial View

S = 〈11, 36, 39〉 and n = 450 ∈ S
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Comments

There is a method to compute the catenary degree of a numerical
monoid. In general, it is difficult to apply.

The GAP Numerical Monoid Package can compute both the catenary
degree of an element in a Numerical Monoid, and the catenary degree
of the entire monoid.

Theorem

If S = 〈n1, · · · , nk〉 is a numerical monoid, then the sequence

{c(s)}s∈S

is eventually periodic with fundamental period a divisor of L.
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{c(s)}s∈S

is eventually periodic with fundamental period a divisor of L.
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Monoids Generated by Arithmetic Sequences

Theorem

(Chapman, Garcia-Sanchez, Llena Forum Math. 21(2009)) Let
S = 〈a, a + d , ..., a + kd〉 where a, d , and k are positive integers,
gcd(a, d) = 1, and 1 ≤ k ≤ a− 1. Then

c(S) =
⌈ a
k

⌉
+ d .

Question

For a numerical monoid S as above, what is the set

{ c(s) | s ∈ S }?
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Base Case

Remark

If S = 〈a, b〉 with gcd(a, b) = 1 and a < b, then moving from one
factorization to another is merely an application of the rule

b + · · ·+ b︸ ︷︷ ︸
a times

= a + · · ·+ a︸ ︷︷ ︸
b times

.

Thus the catenary degree of an element in S is either 0 or b, and can be
described as follows.

c(s) =



0 if s < ab
b if s = ab
0 if ab < s < 2ab − a− b and s − ab 6∈ 〈a, b〉
b if ab < s < 2ab − a− b and s − ab ∈ 〈a, b〉
0 if s = 2ab − a− b
b if 2ab − a− b < s.
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Main Result

Theorem

Given S = 〈a, a + d . . . a + kd〉, where gcd(a, d) = 1, 1 < k < a, and
s ∈ S , then

c(s) =


0 if |Z (s)|= 1,

2 if |Z (s)|> 1 and |L(s)|= 1,⌈ a
k

⌉
+ d if |L(s)|> 1.
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Side Observation

Theorem

If S is as above and s ∈ S with s > a · c(S) + F(S), then c(s) = c(S).
Thus the sequence {c(s)}s∈S is eventually constant.

Definition

If S is as above and s ∈ S is the biggest element in S such that
c(s) 6= c(S), then we call s the dissonance of S and we denote it by
dis(S) = s.

Theorem

If S is as above, then

dis(S) ={
a · c(S) + F(S) if 1 ≤ k < 2 + [a− 1 mod k] + [a− 2 mod k]

a · c(S) + F(S)− a if k ≥ 2 + [a− 1 mod k] + [a− 2 mod k].
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