
A NEW VILLAIN: INVESTIGATING STEGANOGRAPHY IN SOURCE ENGINE BASED VIDEO
GAMES

By

Christopher Hale

A Project
Presented to the Faculty of

The Computer Science Department

In partial fulfillment
Of the requirements for the degree

Master of Science

Huntsville, Texas
April 10, 2012

 2

Table of Contents

TABLE OF CONTENTS ... 2

1 INTRODUCTION .. 3
1.1 COMPUTER CRIMES IN THE DIGITAL AGE ... 3
1.2 A NEW VILLAIN ... 4

2 THE SOURCE GAMING ENGINE ... 5
2.1 THE VALVE CORPORATION: CREATORS OF THE SOURCE ENGINE .. 5
2.2 THE SOURCE ENGINE .. 6
2.3 STEAM ... 8

2.3.1 Who Uses Steam?... 9
2.4 HAMMER ... 10

2.4.1 What is Hammer? .. 10
2.4.2 Tools Encompassed Within Hammer .. 11

3 HIDING DATA IN SOURCE GAMES .. 14
3.1 WHY VIDEO GAMES? .. 14
3.2 STEGANOGRAPHY .. 16
3.3 EMBEDDING TEXT WITH BRUSHES .. 16

3.3.1 Benefits and Disadvantages .. 17
3.4 EMBEDDING TEXT WITH OVERLAYS .. 17

3.4.1 Benefits and Disadvantages .. 19
3.5 EMBEDDING IMAGES WITH TEXTURES .. 20

3.5.1 Image Preparation .. 20
3.5.2 Benefits and Disadvantages .. 23

3.6 DISTRIBUTING MAPS .. 23
3.6.1 Packaging .. 24
3.6.2 Installation .. 24

4 INVESTIGATING SOURCE GAMES ... 26
4.1 THE FORENSIC PROCESS .. 26
4.2 INVESTIGATING DATA HIDDEN WITH BRUSHES .. 27
4.3 INVESTIGATING DATA HIDDEN WITH OVERLAYS .. 28

4.3.1 Detection and Analysis .. 28
4.4 INVESTIGATING DATA HIDDEN WITH TEXTURES .. 29

4.4.1 Detection and Analysis .. 30

5 CONCLUSION ... 32
5.1 APPLICATION OF THIS RESEARCH... 32
5.2 FUTURE WORK .. 33

TABLE OF FIGURES ... 34

BIBLIOGRAPHY .. 35

 3

1 Introduction

1.1 Computer Crimes in the Digital Age

 We live in a computer age. As time progresses, we become increasingly dependent

on computers and related technology for our daily lives. These technologies make

seemingly menial and basic tasks streamlined and easier to handle. Even complex and

involved activities are being bestowed upon computer systems due to their convenience

and expediency. With the growing amount of information and responsibility placed on

computer systems comes an increased threat of misuse and abuse of these systems.

Safeguards must be developed in conjunction with technology in order to ensure its safety

and keep threats in check. Symantec, a popular antivirus software company, releases an

annual report on the state of computer crime and malware throughout the world's

computer systems. In their most recent report, Symantec found over 286 million unique

malware variations in circulation. The report also shows a 93% increase in web attacks, a

42% increase in mobile device vulnerabilities, and 6,253 new software vulnerabilities.

These numbers represent the largest yearly increase in the fifteen years that this study has

been conducted [1]. All of these numbers represent the inherent threats that computers

and electronic devices bring to their users.

 As the threat of computer crime grows, so does the number of avenues which

criminals may use to conduct illegal and potentially damaging activities. One of the newest

and often overlooked threats comes from a seemingly innocuous source: video games.

 4

1.2 A New Villain

 In the not too distant past, creating a video game was a relatively small venture. A

team of one or two individuals could create, publish, and release a game on their own.

Since its humble beginnings, the art of video game development has become an enormous

commercial success. With over 72% of all American households playing video games and

$4.9 billion in revenue [2] [3], this industry is booming more now than ever before. As a

result, most games are no longer produced by individuals in their free time, but by studios

employing hundreds of game designers and developers.

 As this industry continues to grow and develop, the potential for exploiting these

services proportionately increases. With the addition of every new technology comes a

new potential threat. Video games vulnerabilities are not often seen as serious security

threats by individuals and security professionals. This paper outlines several of these

threats and how they can be used to transmit illegal data and conduct potentially illegal

activities. It also demonstrates how investigators can respond to these threats in order to

combat this emerging phenomenon in computer crime.

 5

2 The Source Gaming Engine

 This paper primarily focuses on threats presented by the Source gaming engine.

This engine is owned and developed by the Valve Corporation. Due to its extremely large

user base and commercial popularity, this engine is one of the most popular in the world of

gaming.

2.1 The Valve Corporation: Creators of the Source Engine

 Valve was founded by Gabe Newell and Mike Harrington in Kirkland, Washington in

1996. These two founders both left Microsoft after working closely on over three

generations of the Windows operating system. The valve corporation began as

collaboration between these two men to create innovative and groundbreaking new video

games. Valve initially worked on development several small projects through the next two

years, eventually abandoning these plans and focusing their resources on their first

commercial release: Half-Life.

Figure 2.1 - The Valve Logo

 On November 19, 1998, Half-Life was released to the public through Sierra On-Line.

Half-Life received monumentally overwhelming positive reception, receiving over fifty

 6

Game of the Year Awards as well as being heralded as "one of the best games ever" [4].

After the release of Half-Life and the influx of revenue this game created, Valve had the

financial means to create more games. In June 1999, Valve released Counter-Strike with

the help of Minh Le and Jess Cliffe, who created the original mod for Half-Life that was the

inspiration for Counter Strike. Currently, Counter Strike 1.6 is the most widely played

online video game in the world with the exception of Massively Multiplayer Online Role

Playing games [5]. In September 2003, Steam was released as a tool to seamlessly

integrate updates into the Counter Strike franchise. Steam gradually saw greater

integration into Counter Strike and all Valve game releases.

 In May 2003, Valve announced the release of their sequel to Half-Life: Half-Life 2.

This iteration of the game was the first to be created exclusively with the new Source

engine. It was slated for a September release in the same year; however this release date

was repeatedly delayed and rescheduled. Half-Life 2 was finally released to the public in

November 2004 after over a year of delays. Half-Life 2 garnered greater reception and

accolades as its predecessor, earning 35 Game of the Year awards [4]. Since the release of

Half-Life 2, Valve has released a number of titles, each using an improved and altered

version of the Source engine. Many of these games have achieved immense commercial

success, including Left 4 Dead 1 & 2, Portals 1 & 2, and further iterations to the Half-Life

franchise [6].

2.2 The Source Engine

 In order to develop their games, Valve acquired the rights to use and modify the

Quake game engine from id Software. The Quake engine was regarded as one of the

 7

premier video game engines of that time, powering the extremely popular and trendsetting

First Person Shooter game Quake. This engine was the first to transfer from a two

dimensional sprite based gaming system to a three dimensional world [5]. The borrowed

game engine was heavily modified in order to better suit Valve's needs, and eventually

became known as the Goldsrc engine.

Figure 2.2 - A Screenshot of Counter Strike 1.6 Running on the Source Engine

 The following years at Valve were focused a combination of developing smaller

titles as well as further enhancing the aging Goldsrc engine. After several iterations and

releases, the Source engine was born from the outdated Goldsrc engine [7]. The Source

engine has been used and is still being utilized on all Valve game releases since its

inception. The modular nature of the Source engine lends itself to constant development

and improvement. One of the most notable additions to the Source engine and all of Valve's

published games is the integration of the Steam platform.

 8

2.3 Steam

 Valve's Steam client was released in 2003 and intended to be used primarily as a

platform to distribute and manage game updates for Counter Strike. Prior to Steam, the

release of an update or patch would result in the disconnection of a large portion of the

users for some time as the game updated. Steam was initially not required of Counter

Strike players. This slowly began to change with the release of Counter Strike 1.6. Prior to

the release of Counter Strike 1.6, all in game matchmaking was conducted by the World

Opponent Network. After version 1.6 was released, Steam also took on the matchmaking

responsibilities of Counter Strike [8]. As Steam began to expand, it also gained more

features and functions. Through time, Steam began to handle more than patch deployment,

including digital distribution, multiplayer, digital rights management, community features,

chat and voice functionality, and anti-cheat detection and resolution technologies.

Eventually, the Steamworks API was also released. This API allows developers to interface

with the Steam platform. As Steam gained popularity, other game developers began to

offer their game catalogs as downloads through Steam. This led to the creation of the

Steam Storefront, a virtual market in which users can browse and purchase games rather

than buy physical copies.

 9

Figure 2.3 - The Steam Interface

 One of the largest draws of Steam is that it is both platform and machine

independent. With traditional PC games, the user must install their game on one PC and

cannot use it on any others. Steam associates games with usernames, so a game bought by

a user can be used on any number of machines or platforms. Steam has even expanded

beyond the realm of PC Gaming. With the release of Portal 2 in April 2011, PlayStation 3

users also had the ability to interface with Steam and use its social features and

Steamworks tools.

2.3.1 Who Uses Steam?

 Since its inception, Steam has continually grown in both scope and user base. As of

the beginning of 2012, Steam has 1523 games available through the store front [9], as well

as 40 million active user accounts [10]. On January 2 2012, Steam broke an all time record

by having 5 million concurrent players in game at the same time [11]. While Valve has

 10

never revealed any details about their market shares, a competing online distribution

service called Stardock estimated that Steam had 70% of the digital distribution market in

2009 [12]. As Steam continues to grow and absorb more market share, competitors have

begun to create their own digital distribution schemes, the most notable of which being

Electronic Arts releasing a similar software titled Origin in June 2011. Steam continues to

see growth and development, and Valve has revealed no plans to abandon the popular

service.

2.4 Hammer

 One of the unique characteristics of the Source engine is its cooperation with the

developer community. Many game engines choose to keep their tools and game mechanics

from the general populous. They instead only allow contracted developers the opportunity

to work with this proprietary software. This is not the case with the Valve Corporation.

Valve's tools are often published with free access to anyone who uses their games. This is

the case with Hammer.

2.4.1 What is Hammer?

 The Valve Hammer Editor is the official level creation tool used by Valve for all

Source based games. It is free software available to any person who has purchased a

Source based game. It is included as part of the Source SDK. Hammer is a replacement for

the outdated Worldcraft tool which was used on Gldsrc games. Created by Ben Morris in

1996, Worldcraft's rights were acquired by Valve when they hired Morris a year later [13].

 11

Figure 2.4 - The Hammer Map Creation Tool

2.4.2 Tools Encompassed Within Hammer

 The Hammer editor allows a developer to create a map through the use of brushes,

entities, and map properties [14]. Brushes are the most primitive of objects in a game level.

Brushes are primarily geometric solids such as blocks, rectangles, cones, and spikes. These

brushes are the primary building blocks to all Source levels. Almost all large shapes and

terrains are created through the manipulation of basic brushes. Small, more detailed

objects are created through the use of models, a separate category of entity within

Hammer. Entities are non-static, sometimes animate objects in Hammer. Entities are most

often objects that are used for interaction as well as non-visible game data or logic that is

needed to make a map come to life. There are two general types of entities: point and

brush. Point entities exist logically at a point or points within the level. Examples of these

entities include players, non-player characters, or lights. Brush entities are tied to a brush

in order to exist, but modify its existence somehow. Some examples of brush entities

 12

include doors, elevators, ladders, or other moving interacting objects. Another example of

brush entities are triggers, an invisible event that fires based on input from the player such

as walking into an area or completing a task. By combining brushes and entities, a virtually

limitless series of levels can be created.

 Hammer also includes tools to compile raw map data into a format that is usable by

the source engine. By default, uncompiled maps are saved in the VMF format. This is a

plaintext, human readable file format that stores information about the level [15]. In order

to convert this text into information that the Source engine can use, several compilation

steps are needed. There are four main programs which run to create a playable level: the

game executable, VBSP, VVIS, and VRAD. The game executable parameter allows the user

to specify which game and set of specific tools to use from the available Source based

games [16]. For instance, Half Life 2 based games have different options and functionality

than Left 4 Dead based games. Once the game parameter has been set, the map data is

passed to VBSP. This tool converts a raw .vmf file into a compiled Binary Space Partition

file (BSP). This is the file type actually used by the engine to render the map. VBSP

converts primitives such as brushes into polygons, generates visible sections of the map,

creates props, and embeds entities [17]. Once this is completed, the .bsp file is passed to

VVIS. VVIS embeds visibility data in the map. This is done by splitting the map into

visleaves, which are small sections of the map that load one at a time, rather than all at

once. This improves performance and load times significantly. VVIS also determines which

visleaves can see each other for rendering order [18]. Once complete, the .bsp is passed to

VRAD. The VRAD tool embeds lighting data into the map. Any user defined and dynamic

lighting information is inserted at this point. The pre-compiled light is then propagated

 13

through the level through a radiosity algorithm [19]. Once all these tools are complete, the

BSP file is ready to be loaded by the game engine and executed.

 14

3 Hiding Data in Source Games

3.1 Why Video Games?

 There are several criteria that make video game files excellent candidates for data

hiding. The first of which is their size. When examining common files such as JPEGs, an

uncommonly large file size can be an indicator of foul play, making it is impossible to hide

large file in these file types without raising the risk of discovery. The advantage of video

game data is that large file sizes are common. A typical video game installation may

contain more than ten gigabytes of data. With this large palette to available, any number of

files can be hidden within. Another factor which makes video game data a viable candidate

for data hiding is its commonality. Video games, especially those with incredibly large sales

volumes, are installed on millions of computers across the world. An investigator finding

these files on a suspect machine may not immediately deem them as suspicious.

Furthermore, because of the dynamic nature of video games, files on each user's machine

are expected to deviate from the initial released version. This eliminates the possibility of

an investigator using expected file contents to check for changes and therefore clue flag a

file or system as potential evidence. Perhaps the biggest advantage video games have in

data hiding is that they are entirely different on disk than when they are running. A simple

text message in game could not be located in the code, yet obtained easily from an in-game

window or overlay. Since most investigations are conducted on dead systems, these sorts

of messages are almost untraceable. The only way for an investigator to mitigate this risk

would be to load and execute every game level as part of an investigation for potential

evidence. This sort of investigation is impractical and would never be used by an

 15

investigator in the field or in a digital forensic lab. All of these attributes make video game

data an almost insurmountable challenge to investigators or unwanted data observation.

 After establishing that video games provide an ample platform for data hiding, one

questions remains: Why Steam? Of all the video game publishers in the industry, why

target Valve's platform and Source engine? There are a number of factors that make Steam

an excellent candidate for conducting this sort of activity. First is its widespread use. With

over 40 million active users, the presence of Steam on a system should raise no suspicion

for an investigator. An added benefit of this software is that it is cross-platform. The data

embedded on files running on a Windows-based system will still be able to be transferred

and utilized by malicious users on the Mac or Linux platforms as well. The tools and

methods for hiding the data are likewise cross-platform. Another contributing factor of

utilizing the Steam platform is the tools for interfacing with and modifying data for the

Source engine are also widely available and free to use. The Hammer world editor, for

instance, comes free with any Source based game. This makes protecting data privacy

more accessible for all users, even those with malicious intent. Because these tools have

been available for some time, the file formats and behaviors are well understood and

documented. Manipulating this data is easier, allowing for further tweaking and

exploitation of game files and properties. One of the most unique properties of the Steam

platform is the integrated social connectivity features. Steam handles much more than

simply running video games, it connects users, distributes content, and has an integrated

platform for sharing maps, mods, and tweaks. By utilizing this built-in functionality,

malicious users can distribute game levels with hidden data on a grand scale. This activity

would also not draw any unwanted attention from investigators, as content is commonly

 16

shared between users on the Steam network. By using the built in tools, packaging, and

sharing functionality, Steam is an all in one tool for hiding and transmitting data using

video game files.

3.2 Steganography

 In the realm of cryptography, there are two main approaches to data obfuscation.

The first and most common approach is encryption. All encryption techniques follow the

same basic strategy: data is sent through an encryption algorithm in order to generate

ciphertext, the encrypted message is sent or stored for the recipient, and the ciphertext is

then decrypted with the key. The security of this data depends solely on the encryption

algorithm. An unintended recipient is able to see the ciphertext, but they cannot access the

original information without the key. Steganography utilizes a different approach to data

security. Rather than transform data into an unreadable form, steganography hides data

inside of a benign secondary piece of data. When data is hidden in this way, onlookers are

unaware that there is any data hidden at all. Steganography is thus a form of security

through obscurity. Other than the sender and receiver, nobody suspects that a message has

been transmitted. Hiding data inside of Source game files is a form of steganography.

3.3 Embedding Text with Brushes

 Embedding data with brushes is the most straightforward method of obfuscation.

To accomplish this, a malicious user can simply create a new brush and shape it in such a

way as to form the words or letters that compose the hidden message. By adding several

brushes, the message can be expanded from a single letter or word to a larger collection of

text. While brushes are initially set as primitive shapes such as rectangles or cubes, more

 17

complicated solids can be created By utilizing Hammer's built in vertex and face edit tools,

thus adding more tools to the malicious user's arsenal.

Figure 3.1 - A Message Hidden With Brushes

3.3.1 Benefits and Disadvantages

 Hiding text in Source games via brushes is a great tool for users who wish to

obfuscate or share messages without being seen. The advantage to using this approach as

opposed to standard encryption is that an investigator or onlooker will not be able to

detect that there is data hidden in the level. Even if an investigator detects that data has

been hidden in the game files, the data is untraceable on disk as it exists only in the

geometry of the level. The main disadvantage to this approach is that it is tedious. It is also

impractical with large amounts of information. For small messages, however, this

approach is ideal.

3.4 Embedding Text with Overlays

 18

 Game overlays are messages and dialogs which appear in-game as the player

navigates through the game map. They are typically used to provide a player with

important information, hints, or instructions. A malicious user may manipulate this

functionality to embed messages which have no bearing on the game, but are instead

intended as hidden data. In order to embed and hide in game text overlays, two entities are

utilized at a fixed point in the map: env_instructor_hint and info_target.

 Env_instructor_hint is a point entity in the Left 4 Dead version of the Source engine

[20]. This entity exists to provide in-game hints for players via a popup on screen. This

popup is primarily text based, although a small image may be inserted. By using this entity

and creating custom text, any message can be embedded in the game. What's more, any

number of these entities can be added to a given level, creating a virtually limitless space

for text to be hidden.

 After inserting an env_instructor_hint into the map, the entity can be customized

through several variable attributes in Hammer. The most useful of these variables is

Caption. Caption holds the text that is ultimately displayed on screen and is where a

malicious individual can embed hidden messages. This text can be combined with one of

many predefined images that are included in the Onscreen Icon variable. There are many

other variables within env_instructor_hint which define the type of text, size, color, and

pulsation, and other attributes. With this entity alone, a hidden message can be easily

embedded in a map which is as simple as a cube with the player inside.

 Although env_instructor_hint is the mechanism used for hiding messages, it does not

exist on its own. The env_instructor_hint entity does not yet have a physical place in the

map to display. Info_target serves this purpose. Info_target is the physical placeholder to

 19

which env_instructor_hint is bound [21]. Wherever the info_target entity is placed is where

the user will see the text defined in env_instructor_hint displayed on screen. Combining

these two entities can be useful for hiding data in a specific location in a map that the

intended user knows to look for. By utilizing env_instructor_hint and info_target, malicious

users can transform a custom game map into a container filled with malicious text

messages.

Figure 3.2 - A Message Hidden With Overlays

3.4.1 Benefits and Disadvantages

 As discussed in the previous section, using brushes to generate and hide text is in

some ways useful; however it is tedious and inefficient. Using overlays is a better way to

accomplish this goal. Text can be added to in-game overlays at predefined points within

the level. Adding large amounts of text to a game map is much easier to accomplish with

overlays. For an investigator, data hidden with this technique can be relatively easy to

recover, yet almost impossible to detect to the untrained onlooker.

 20

3.5 Embedding Images with Textures

 Child pornography is one of the most grievous cyber crimes facing law enforcement

and digital forensic investigators. These investigators analyze systems for this type of

content to expose the offenders. Malicious users employ encryption, steganography, and

other means of obfuscation to thwart investigator's attempts to uncover the proper

evidence to convict these criminals in the court of law. Hammer can also be used as a tool

to hide potentially illegal or otherwise malicious images.

3.5.1 Image Preparation

 While embedding text into a Source map file is fairly straightforward, adding images

requires more involved work. Any image applied to a surface or brush in a map is referred

to as a texture. To begin examining how these files are hidden, it is necessary to

understand how the Source engine handles images. Most images are saved as predefined

file types that are familiar to most computer users. Examples of these include JPEG, PNG,

and GIF. The Source engine does not interface with these types of images directly. Instead,

it uses a proprietary format; VTF.

 Valve Texture File (VTF) files are stored in a format different than more widely used

image formats in several key areas. The most notable characteristic of the VTF format is

that the total size of the image must be a power of two as measured in pixels. For example,

images must be 2x2, 4x4, 8x8, 16x16 and so on. The dependency on square images can be a

hindrance to users embedding data; however most images can be made square through

selective cropping or the addition of white space. The reason for the reliance on square

images is the presence of mipmap data in the VTF file. Mipmaps are smaller, lower

 21

resolution versions of the original image also stored in the file. These mipmaps are used by

the Source engine to render the image differently at varying distances in the game. The

lower resolution images are used at the farthest distance, with increasing resolution as the

image comes closer on screen. This improves rendering speed and processing

performance of the game. Each respective mipmap is half of the previous mipmap, creating

the reliance on a power of two size constraint. VTF files also contain other additional

information used by the Source engine, including a bump map scale, a low resolution copy

of the VTF for color rendering, and a reflectivity value used by the VRAD program in

determining final rendering appearance [22]. More complex textures such as environment

maps and volumetric textures include even more data, all of which is stored in the VTF file.

 Hammer does not include a tool for creating custom textures that are not already

bundled with the engine. Luckily third party tools exist to convert common image file types

to VTF files. One of the most prevalent of these is VTFEdit.

 VTFEdit is a free, open source tool which can create a VTF file from almost any

popular image file type. It also can edit flags and attributes within a VTF file. VTFEdit

utilizes the open source VTFLib library. VTFEdit not only can convert to and from the VTF

file format, but has additional functionality which allows it to edit VMT files, which are

discussed in detail below. VTFEdit has the ability to handle files in batches as well as create

all mipmaps and VTF file headers utilized by the Source engine [23].

 The Source engine does not only use VTF files for rendering textures in-game. Each

texture file is also paired with a corresponding Valve Material Type (VMT) file. These files

are text based files which serve as a set of metadata for the texture they correspond o. This

allows the Source engine to determine how to render the textures properly. Attributes

 22

included in VMT files include texture names, physical surface types, shader parameters,

fallbacks, and proxies [24]. Although these files are usually fairly simple, they can be used

to hide either plain text or encrypted text. While this type of text would be easily viewable

on disk to an investigator, it can still serve as an additional container for malicious data.

 Once a texture has been generated from VTFEdit, it can then be embedded into the

map within Hammer. This is a simple process done through Hammer's map creation

interface. The texture application can be invoked to navigate through the engine's built in

textures. Depending on where the custom texture is stored, the creator can navigate to the

directory and select the custom texture. Applying the texture is as simple as selecting the

appropriate brush or entity and clicking the Apply Current Texture button. Once applied,

many of the texture's properties can be edited from within Hammer. Once compiled, the

texture and any hidden information it or its corresponding VMT file contains is

permanently embedded in the level.

Figure 3.3 - Images Hidden With Textures

 23

3.5.2 Benefits and Disadvantages

 The file extension used by an image on disk is of little importance to an investigator.

The investigator's primary objective is to identify the file format based on its content rather

than file extension. This is done commonly though the use of file signatures. JPEG images,

for instance, have a common header and footer in the code of every image. This header and

footer do not change due to a change in the file extension. Investigators can utilize this fact

by searching for the file header rather than the file type on a suspect system. In the case of

JPEG, the file signature is 'ÿØÿà' , or FF D8 FF E0 in hexadecimal. When converting an image

to a VTF file, the file signature and header previously used by the image is lost. This is true

for not only JPEGs, but all other file types. By eliminating these file signatures, an

investigator's most common and effective method of uncovering images is proven

ineffective. This makes the recovery of illegal or malicious files hidden within a Source

game level a greater challenge. The reliance on outside tools and the complexity of the

process required to embed custom images makes this method less than ideal for a

malicious user. The time required to perform this type of steganography is great.

3.6 Distributing Maps

 After a map and all of the corresponding assets are created, packaging and

distribution can take place. Valve has a proprietary file format for this process, called Valve

Pack (VPK). This file format is a relatively newer format which has replaced the outdated

GFC format formerly used in Source games [25]. VPK files are packages which contain all of

the necessary components for custom maps to be installed and run. This includes the

map's BSP files, navigation logic files, textures, and a few identifying pieces of metadata

 24

used by the in-game UI. It is important to note that VPK data is archived, and therefore

typically tightly packed. This format allows developers to share their data through a single

file download which makes download and installation of game content seamless and easy

for the end user.

Figure 3.4 - The Contents of a Typical VPK Package

3.6.1 Packaging

 In order to create a VPK file, Valve has released a free tool as part of the Source

engine SDK. This tool, called simply VPK, uses a directory containing the game files to be

packaged as input and outputs the completed package. It can be run as a command line

tool, giving it the ability to be used in batch programs to output large amount of game

packages. It can also be used to list and modify the contents of a VPK file [26].

3.6.2 Installation

 25

 Game users can either double-click the VPK package to install it into the game via

the operating system or manually add it by placing it in the 'addons' subdirectory of the

game's installation files. For an investigator, this file provides a one stop shop for

potentially malicious game content. The location of these files is demonstrated in Fig. 3.5

below.

Figure 3.5 - Contents of a Game 'Addons' Directory

 26

4 Investigating Source Games

4.1 The Forensic Process

 As demonstrated throughout this paper, Steam maps can be used to store and

transmit sensitive and potentially dangerous and illegal data. From an investigative

standpoint, these files hold a potential treasure trove of information and evidence. As an

investigator, extracting and examining this evidence is crucial. There are many tools which

can be used accomplish this task. One of the most popular and widely used of these tools is

the Forensic Tool Kit (FTK).

 FTK is an enterprise-level digital forensics software used by many digital forensic

investigators in the field and in crime labs across the country. This software package has

been forensically tested and is verified as sound for use in investigations. In order to

assume the role of an investigator, Steam game files will be examined with FTK. The files

used for this process were extracted from a hard drive and archived, which is typical of

what an investigator will do with a suspect machine, rather than working with a live

system.

 One of the main problems facing investigators of Steam game files is the sheer

amount of data to be processed. Every texture and map file potentially holds condemning

information. Deciding which of these files hold evidence is the first obstacle to overcome as

every Source based game comes pre packaged with hundreds of textures and many map

files. It is therefore the obligation of an investigator to determine which of these files hold

malicious data and which are benign.

 27

 The first order of business when investigating Source game files is to determine how

they are stored. As stated above, game files may be stored as a single archived VPK file or

as a series of directories in the game's install location. To locate VPK files on disk, an

investigator can search for all files with the VPK extension. In the case of a suspect

changing the file extension to cover up data, the investigator can also find these files by the

VPK signature, 0x55aa1234. Once the VPK file has been found, tools can be used to unpack

it to its constituent file structure. The unpacked file structure is much easier to work with,

allowing an investigator to search in the appropriate folders for the files they need. One of

the tools available to unpack these files is GCFScape.

 GCFScape is a free utility that can is part of the Nem's Tools pack of Source map

editing and enhancement software [27]. It is open source and can be used freely by

anyone. This tool allows users to view, modify, and extract the underlying file structure

from VPK files. For an investigator, it can be used for its extraction functionality. Although

it is not a fully verified forensic tool, its open source nature could provide for verification in

the future should an investigator need to pursue this avenue. After GFCScape has been

used to extract the custom map files from a VPK file, they can then be examined by the

investigator. Unfortunately, FTK cannot natively display the visual contents of any of the

proprietary Valve formats, so hexadecimal searching is the most efficient way to sort

through these files.

4.2 Investigating Data Hidden with Brushes

 It has been shown that data can be hidden in a level by manipulating brushes and

geometry to create words. Unfortunately, this type of hidden data cannot be uncovered by

 28

an investigator. The level geometry is stored in integer format based on its vertices and

their location in the map. This information is useless on disk to an investigator. The only

way to view and use this data is to load the map into the game and run it. This method of

an investigation is often not feasible for an investigator; however it may be used as a last

resort.

4.3 Investigating Data Hidden with Overlays

 An unpacked VPK file contains many resources, including textures, maps, models,

and metadata. Each of these files may contain evidence hidden by one or many of the

above methods. The easiest of these to recover is embedded messages hidden via in game

pop ups. These messages are stored in the mapname.bsp file. By examining the

hexadecimal contents of this file, important pieces of information can be uncovered.

4.3.1 Detection and Analysis

 Within a BSP file, entities are defined in entity lumps. Each of these lumps contains

defining information about an entity, including its location and properties. This

information is stored in plaintext as it appears in game. Lumps are stored in the general

format show in Fig. 4.1 below.

{

 "world_maxs" "480 480 480"

 "world_mins" "-480 -480 -224"

 "maxpropscreenwidth" "-1"

 "skyname" "sky_wasteland02"

 "classname" "worldspawn"

}

{

 "origin" "-413.793 -384 -192"

 "angles" "0 0 0"

 "classname" "info_player_start"

 29

}

{

 "model" "*1"

 "targetname" "secret_1"

 "origin" "424 -1536 1800"

 "Solidity" "1"

 "StartDisabled" "0"

 "InputFilter" "0"

 "disablereceiveshadows" "0"

 "disableshadows" "0"

 "rendermode" "0"

 "renderfx" "0"

 "rendercolor" "255 255 255"

 "renderamt" "255"

 "classname" "func_brush"

}

Figure 4.1 - The Lump File Structure from a BSP File

 By using the identifying fields in the entity lump, an investigator can recover hidden

messages. Messages hidden with the env_instructor_hint entity as discussed previously can

be found by searching for the keyword hint_caption. The hint_caption field contains the

actual text displayed on screen in game as a popup hint. In the BSP, an example of a

recovered hint_caption is:

"hint_caption" "Any message may be hidden in game as text!"

By recovering all instances of this keyword, an investigator can uncover hidden messages

from a Source map hidden using env_instructor_hint.

4.4 Investigating Data Hidden with Textures

 Investigative parsing of map data for hidden images can be accomplished in a

similar manner to searching for text data. By utilizing the file structure and container

formats, an investigator can identify files and then extract them for investigation. Because

images included in game files do not have common file signatures, they will not be properly

 30

flagged in most investigative software. This limitation creates the necessity for an

investigator to manually find these files using the file signatures.

4.4.1 Detection and Analysis

 To uncover hidden images in Source game files, the investigator needs to first

identify custom textures embedded in the map. This can be done by first expanding the

VPK file with GCFScape as discussed above. Once expanded, all custom textures can be

located in the materials directory within the VPK file. By utilizing the underlying file

structure to identify custom textures, the investigator can effectively narrow down the

search for suspicions textures from every texture in the game to a small fraction of that

number. Alternatively, the investigator can find all VTF texture files by searching for the

hexadecimal VTF file signature "VTF\0".

Figure 4.2 - Investigating Source Map files with FTK

 31

 With the suspect texture files identified, they can then be inspected by the

investigator. Again, FTK does not support natively viewing these files. An outside program

such as VTFEdit would need to be used to open this file. Any malicious images can be

viewed and exported from this program. While VTFEdit is not forensically verified, it can

still be utilized in an investigator as no digital forensic suites can currently parse this data

natively.

 32

5 Conclusion

5.1 Application of this Research

 The field of digital forensics is a double bladed sword. On one side there is the

concept of privacy, as individuals believe that they have the right to protect their own data

however they see fit. This can include encryption, steganography, and other means of

obfuscation. On the other side, there are investigators and law enforcement attempting to

prevent and uncover individuals using these means to conduct illegal or malicious activity.

 In the name of individual privacy, many tools and software have been developed in

order to hide or otherwise prevent viewing or tampering by anyone other than those

intended. Many file types have known exploitations or loopholes which allow for data to be

manipulated in order to protect privacy. Although this is a pain for investigators, it is a

necessary evil. One vessel for data hiding that has not been developed or researched in

depth is video game data.

 This paper demonstrates both ends of the spectrum of data privacy and security. It

shows how a concern citizen may use game files to store information that they want to

secure from prying eyes. While it is true that this privilege may be abused in a malicious

way, this fact is not guaranteed. This paper also demonstrates how an investigator may

conduct an investigation in the face of these new techniques for data hiding in video game

files. It further demonstrates the need for investigative technologies to continue growth in

order to keep up with the multitude of computer crimes being committed constantly across

the nation and the world.

 33

5.2 Future Work

 Computer crime is an ever-growing, ever changing venture. Just as law enforcement

has caught up to the current criminal technology, new technology is introduced. This

ongoing game of cat and mouse necessitates the constant development of tools and

methodologies for fighting computer crime. This concept can be demonstrated with the

utilization of Steam and Source based games to obfuscate data as well as the need for tools

to address the issue of hidden data.

 Three main methodologies for hiding data in source games are demonstrated in this

paper; however there are potentially countless more methods available. For instance,

steganography in the raw data files of Source maps can be further investigated and

implemented as well as data in transmission during online or LAN games. This paper also

focuses on one game engine only. There are many more game platforms and engines such

as Origin, Stardock, and Gamefly which may have hidden data which also need further

research.

 On the investigative front, there is also room for future research and development.

As mentioned above, neither FTK nor any other investigative tools can natively display or

manipulate Source game files. Tools to analyze data in transmission from these games are

also necessary to intercept and analyze potentially illegal data in transfer. The addition of

this functionality to these tools will greatly improve their ability to investigate and process

game files for hidden data. Forensically testing and verifying these programs will create

tools which can be used in court to convict criminals or exonerate innocents.

 34

Table of Figures

FIGURE 2.1 - THE VALVE LOGO………..5
FIGURE 2.2 - A SCREENSHOT OF COUNTER STRIKE 1.6 RUNNING ON THE SOURCE ENGINE………………………..7
FIGURE 2.3 - THE STEAM INTERFACE……9
FIGURE 2.4 - THE HAMMER MAP CREATION TOOL……………………………………………………………………………………10
FIGURE 3.1 - A MESSAGE HIDDEN WITH BRUSHES ..…………………………………………………………………………………17
FIGURE 3.2 - A MESSAGE HIDDEN WITH OVERLAYS………………………………………………………………………………….19
FIGURE 3.3 - IMAGES HIDDEN WITH TEXTURES....…………………………………………………………………………………….22
FIGURE 3.4 - THE CONTENTS OF A TYPICAL VPK PACKAGE....……………………………………………………………………24

FIGURE 3.5 - CONTENTS OF A GAME 'ADDONS' DIRECTORY….………………………………………………………………….25
FIGURE 4.1 - THE LUMP FILE STRUCTURE FROM A BSP FILE…………………………………………………………………….29
FIGURE 4.2 - INVESTIGATING SOURCE MAP FILES WITH FTK……………………………………………………………………30

 35

Bibliography

[1] M. Fossi and T. Mack, "Symantec Internet Security Threat Report:
 Trends for 2010," Symantec Corp., Moantain View, CA, Tech. Rep. 21182883, Apr.
 2011

[2] Entertainment Software Association, (2011). Essential Facts about the Computer And
 Video Game Industry [Online]. Available:
 http://www.theesa.com/facts/pdfs/ESA_EF_2011.pdf.

[3] Entertainment Software Association, (2011). Industry Facts: Economic Data [Online].
 Available: http://www.theesa.com/facts/econdata.asp.

[4] Valve Corporation, (2010). Welcome to Valve [Online]. Available:
 http://www.valvesoftware.com/company/index.html.

[5] T. Bayer, (2010). 14 years of Quake Engine: The Famous Games with id Technology
 [Online]. Available: http://www.pcgameshardware.com/aid,687947/14- years-
 of-Quake-Engine-The-famous-games-with-id-Technology/News/

[6] M. Thomsen, (2009). Ode to Source: A History of Valve's Tireless Game Engine
 [Online]. Available: http://pc.ign.com/articles/102/1027317p1.html.

[7] A. Capriole and J. Phillips, (2008). The History of Valve [Online]. Available:
 http://planethalflife.gamespy.com/View.php?view=Articles.Detail&id=121.

[8] Warf!y, (2011). About the Steamless CS Project [Online]. Available:
 http://v5.steamlessproject.nl/index.php?page=about.

[9] Valve Corporation, (2010). Games [Online]. Available:
 http://store.steampowered.com/search/#category1=998&advanced=0&sort_order
 =ASC& page=1.

[10] K. Mudgal, (2012). Valve Releases PR; Steam Userbase Doubles in 2011, Big Picture
 Mode Coming Soon [Online]. Available: http://gamingbolt.com/valve-releases-pr-
 steam- userbase-doubles-in-2011-big-picture-mode-coming-soon.

[11] T. Senior, (2012). Steam Hits Five Million Concurrent Players [Online]. Available:
 http://www.pcgamer.com/2012/01/03/steam-hits-five-million-concurrent-
 players/.

[12] K. Graft, (2009). Stardock Reveals Impulse, Steam Market Share Estimates [Online].
 Available: http://www.gamasutra.com/php-bin/news_index.php?story=26158.

 36

[13] Hammer Editor Version History (2010) [Online]. Available:
 https://developer.valvesoftware.com/wiki/Hammer_Editor_version_history.

[14] Mapping Overview (2010) [Online]. Available:
 https://developer.valvesoftware.com/wiki/Introduction_to_Editing.

[15] VMF Documentation (2012) [Online]. Available:
 https://developer.valvesoftware.com/wiki/VMF_documentation.

[16] Hammer Game Configurations (2011) [Online]. Available:
 https://developer.valvesoftware.com/wiki/Game_Configurations.

[17] VBSP (2011) [Online]. Available: https://developer.valvesoftware.com/wiki/Vbsp.

[18] VVIS (2011) [Online]. Available: https://developer.valvesoftware.com/wiki/Vvis.

[19] VRAD (2012) [Online]. Available: https://developer.valvesoftware.com/wiki/Vrad.

[20] Env_Instructor_Hint (2011) [Online]. Available:
 https://developer.valvesoftware.com/wiki/Env_instructor_hint.

[21] Info_target (2012) [Online]. Available:
 https://developer.valvesoftware.com/wiki/Info_target.

[22] Valve Texture Format (2011) [Online]. Available:
 https://developer.valvesoftware.com/wiki/Valve_Texture_Format.

[23] VTFEdit (2011) [Online]. Available:
 https://developer.valvesoftware.com/wiki/VTFEdit.

[24] Material (2011) [Online]. Available:
 https://developer.valvesoftware.com/wiki/Material.

[25] VPK File Format (2011) [Online]. Available:
 https://developer.valvesoftware.com/wiki/VPK_File_Format.

[26] VPK (2011) [Online]. Available: https://developer.valvesoftware.com/wiki/VPK.

[27] R. Gregg, (2006). AboutGCFScape [Online]. Available:
 http://nemesis.thewavelength.net/index.php?p=25.

