
A NEW VILLAIN: INVESTIGATING STEGANOGRAPHY IN SOURCE
ENGINE BASED VIDEO GAMES

Christopher Hale

Department of Computer Science
Sam Houston State University

Huntsville, Texas
chris.hale@shsu.edu

Lei Chen
Department of Computer Science

Sam Houston State University
Huntsville, Texas
chen@shsu.edu

Qingzhong Liu
Department of Computer Science

Sam Houston State University
Huntsville, Texas

liu@shsu.edu

Abstract—In an ever expanding field such as computer and
digital forensics, new threats to data privacy and legality are
presented daily. As such, new methods for hiding and securing
data need to be created. Using steganography to hide data within
video game files presents a solution to this problem. In response
to this new method of data obfuscation, investigators need
methods to recover specific data as it may be used to perform
illegal activities. This paper demonstrates the widespread impact
of this activity and shows how this problem is present in the real
world. Our research also details methods to perform both of
these tasks: hiding and recovery data from video game files that
utilize the Source gaming engine.

Keywords-steganography, Steam, Source, video games, digital
forensics, investigation, Hammer

I. INTRODUCTION

With the growing amount of information and responsibility
placed on computer systems comes an increased threat of
misuse and abuse of these systems. Safeguards must be
developed in conjunction with technology in order to ensure
its safety and keep threats in check. In a most recent report by
Symantec, they found over 286 million unique malware
variations in circulation. The report also shows a 93% increase
in web attacks, a 42% increase in mobile device
vulnerabilities, and 6,253 new software vulnerabilities. These
numbers represent the largest yearly increase in the fifteen
years that this study has been conducted [1]. All of these
numbers represent the inherent threats that computers and
electronic devices bring to their users.

As the threat of computer crime grows, so does the number
of avenues which criminals may use to conduct illegal and
potentially damaging activities. One of the newest and often
overlooked threats comes from a seemingly innocuous source:
video games. In the not too distant past, creating a video game
was a relatively small venture. A team of one or two
individuals could create, publish, and release a game on their
own. Since its humble beginnings, the art of video game
development has become an enormous commercial success.
With over 72% of all American households playing video
games and $4.9 billion in revenue [2][3], this industry is
booming more now than ever before. As video game business
continues to grow and develop, the potential for exploiting
these services proportionately increases. Video games
vulnerabilities are not often seen as serious security threats by

individuals and security professionals. This paper outlines
several of these threats and how they can be used to transmit
illegal data and conduct potentially illegal activities. It also
demonstrates how investigators can respond to these threats in
order to combat this emerging phenomenon in computer
crime.

This paper is organized as follows. In Section II we
introduce the Source Engine, one of the most popular game
engines, Steam, a powerful game integration and management
tool, and Hammer, an excellent tool for creating virtual
environment in video games. In Section III we look at various
ways of hiding data in video games using the above tools.
Section IV discusses methods for investigators to detect
hidden data in game files and environments. We draw
conclusion and lay out future work in Section V.

II. THE SOURCE GAMING ENGINE

This paper primarily focuses on threats presented by the
Source gaming engine. This engine is owned and developed
by the Valve Corporation. Due to its extremely large user base
and commercial popularity, it is one of the most popular in the
world of gaming.

A. The Valve Corporation: Creators of the Source Engine

Kirkland, Washington, in the year of 1996, Valve was
founded by Gabe Newell and Mike Harrington, two previous
Microsoft Windows developers. The company started to create
innovative and groundbreaking new video games. Valve
initially worked on developing several small projects through
the next two years, eventually abandoning these plans and
focusing their resources on their first commercial release:
Half-Life. Since its release in 1998, Half-Life received over
fifty Game-of-the-Year Awards as well as being heralded as
"one of the best games ever" [4]. Following the commercial
success of Half Life, Valve released its next successful game:
Counter-Strike. Currently, Counter Strike 1.6 is the most
widely played online video game in the world with the
exception of Massively Multiplayer Online Role Playing
Games [5]. In September 2003, Steam was released as a tool
to seamlessly integrate updates into the Counter Strike
franchise. It gradually saw greater integration into Counter
Strike and all Valve game releases. Since the release of Half-
Life 2 in 2004, Valve has released a number of titles, each
using an improved and altered version of the Source game

engine. Many of these games have achieved immense
commercial success, including Left 4 Dead 1 and 2, Portal 1
and 2, and further iterations to the Half-Life franchise [6].

B. The Source Engine

In order to develop their games, Valve acquired the rights
to use and modify the Quake game engine, published by id
Software. The Quake engine was regarded as one of the
premier video game engines of that time, powering the
extremely popular and trendsetting First Person Shooter game
Quake. This engine was the first to transfer from a two
dimensional sprite based gaming system to a three dimensional
world [5]. The borrowed game engine was heavily modified in
order to better suit Valve's needs, and eventually became
known as the Goldsrc engine. The following years at Valve
were focused a combination of developing smaller titles as well
as further enhancing the aging Goldsrc engine. After several
iterations and releases, the Source engine was born from the
outdated Goldsrc engine [7]. The Source engine has been used
and is still being utilized on all Valve game releases since its
inception. The modular nature of the Source engine lends itself
to constant development and improvement. One of the most
notable additions to the Source engine and all of Valve's
published games is the integration of the Steam platform.

C. Steam

Prior to Steam, the release of an update or patch would
result in the disconnection of a large portion of the users for
some time as the game updated. Steam initially set out to
better facilitate patch deployment and management. As Steam
began to expand, it also gained more features and functions.
Through time, Steam began to handle more than patch
deployment, including digital distribution, multiplayer, digital
rights management, community features, chat and voice
functionality, and anti-cheat detection and resolution
technologies. Eventually, the Steamworks API was also
released, allowing developers to interface with the Steam
platform. As Steam gained popularity, other game developers
began to offer their game catalogs as downloads through it.

One of the largest draws of Steam is that it is both platform
and machine independent. Since its inception, Steam has
continually grown in both scope and user base. As of the
beginning of 2012, Steam has 1523 games available through
the store front [9], as well as 40 million active user accounts
[10]. On January 2, 2012, Steam broke an all-time record by
having 5 million concurrent players in game at the same time
[11]. While Valve has never revealed any details about their
market shares, a competing online distribution service Stardock
estimated that Steam had 70% of the digital distribution market
in 2009 [12]. Steam continues to see growth and development,
and Valve has revealed no plans to abandon the popular
service.

D. Hammer

One of the unique characteristics of the Source engine is its
cooperation with the developer community. Many game
engines choose to keep their tools and game mechanics from
the general populous. They instead only allow contracted

developers the opportunity to work with this proprietary
software. This is not the case with the Valve Corporation.
Most of Valve's tools, including Hammer, are often published
with free access to anyone who uses their games.

The Hammer Editor is the official level creation tool used
by Valve for all Source based games. It is free software
available to any person who has purchased a Source based
game. It is included as part of the Source Software
Development Kit (SDK). Hammer is a replacement for the
outdated Worldcraft tool which was used on Goldsrc games.
Created by Ben Morris in 1996, Worldcraft's rights were
acquired by Valve when they hired Morris a year later [13].

The Hammer editor allows a developer to create a map
through the use of brushes, entities, and map properties [14].
Brushes are the most primitive of objects in a game level. They
are primarily geometric solids such as blocks, rectangles,
cones, and spikes. These brushes are the primary building
blocks to all Source levels. Almost all large shapes and terrains
are created through the manipulation of basic brushes. Small
and more detailed objects are created through the use of
models, a separate category of entity within Hammer. Entities
are non-static, sometimes animate objects that are used for
interaction as well as non-visible game data or logic needed to
make a map come to life. There are two general types of
entities: point and brush. Point entities exist logically at a point
or points within the level. Examples of these entities include
players, non-player characters, or lights. Brush entities are tied
to a brush in order to exist, but modify its existence somehow.
Some examples of brush entities include doors, elevators,
ladders, or other moving interacting objects. Another example
of brush entities are triggers, an invisible event that fires based
on input from the player such as walking into an area or
completing a task. By combining brushes and entities, a
virtually limitless series of levels can be created.

Hammer also includes tools to compile raw map data into a
format that is usable by the Source engine. By default,
uncompiled maps are saved in the proprietary VMF format.
This is a plaintext, human readable file format that stores
information about the level [15]. In order to convert this text
into information that the Source engine can use, several
compilation steps are needed. There are four main programs
which run to create a playable level: the game executable,
VBSP, VVIS, and VRAD. The game executable parameter
allows the user to specify which game and set of specific tools
to use from the available Source based games [16]. For
instance, Half Life 2 based games have different options and
functionality than Left 4 Dead based games. Once the game
parameter has been set, the map data is passed to VBSP. This
tool converts a raw .vmf file into a compiled Binary Space
Partition (BSP) file. This is the file type actually used by the
engine to render the map. VBSP converts primitives such as
brushes into polygons, generates visible sections of the map,
creates props, and embeds entities [17]. Once this is completed,
the .bsp file is passed to VVIS. VVIS embeds visibility data in
the map. This is done by splitting the map into visleaves, which
are small sections of the map that load one at a time, rather than
all at once. This improves performance and load times
significantly. VVIS also determines which visleaves can see
each other for rendering order [18]. Once complete, the .bsp is

passed to VRAD. The VRAD tool embeds lighting data into
the map. Any user defined and dynamic lighting information is
inserted at this point. The pre-compiled light is then propagated
through the level through a radiosity algorithm [19]. Once all
these tools are complete, the BSP file is ready to be loaded by
the game engine and executed.

III. HIDING DATA IN SOURCE GAMES

A. Why Video Games and Steam?

There are several criteria that make video game files
excellent candidates for data hiding, the first of which is their
size. When examining common files such as JPEGs, an
uncommonly large file size can be an indicator of foul play,
making it impossible to hide large file in these file types
without raising the risk of discovery. The advantage of video
game data is that large file sizes are common. A typical video
game installation may contain more than ten gigabytes of data.
With this large palette available, any number of files can be
hidden within. Another factor which makes video game data a
viable candidate for data hiding is its commonality. Video
games, especially those with incredibly large sales volumes,
are installed on millions of computers across the world. An
investigator finding these files on a suspect machine may not
immediately deem them as suspicious. Furthermore, because
of the dynamic nature of video games, files on each user's
machine are expected to deviate from the initial released
version. This eliminates the possibility of an investigator using
expected file contents or hash values to check for changes and
therefore flag a file or system as potential evidence. Perhaps
the biggest advantage video games have in data hiding is that
they are entirely different on disk than when they are running.
A simple text message in game could not be located in the
code, yet obtained easily from an in-game window or overlay.
Since most investigations are conducted on dead systems,
these sorts of messages are almost untraceable. The only way
for an investigator to mitigate this risk would be to load and
execute every game level as part of an investigation for
potential evidence. This sort of investigation is impractical and
would never be used by an investigator in the field or in a
digital forensic lab. All of these attributes make video game
data an almost insurmountable challenge to investigators or
unwanted data observation.

After establishing that video games provide an ample
platform for data hiding, one questions remains: Why Steam?
Of all the video game publishers in the industry, why target
Valve's platform and Source engine? There are a number of
factors that make Steam an excellent candidate for conducting
this sort of activities. First is its widespread use. With over 40
million active users, the presence of Steam on a system should
raise no suspicion for an investigator. An added benefit of this
software is that it is cross-platform. The data embedded on
files running on a Windows-based system will still be able to
be transferred and utilized by malicious users on Mac or Linux
platforms as well. The tools and methods for hiding the data
are likewise cross-platform. Another contributing factor of
utilizing the Steam platform is the tools for interfacing with

and modifying data for the Source engine are also widely
available and free to use. The Hammer world editor, for
instance, comes free with any Source based game. This makes
protecting data privacy more accessible for all users, even
those with malicious intent. Because these tools have been
available for some time, the file formats and behaviors are
well understood and documented. Manipulating this data is
easier, allowing for further tweaking and exploitation of game
files and properties. One of the most unique properties of the
Steam platform is the integrated social connectivity features.
Steam handles much more than simply running video games, it
connects users, distributes content, and has an integrated
platform for sharing maps, mods, and tweaks. By utilizing this
built-in functionality, malicious users can distribute game
levels with hidden data on a grand scale. This activity would
also not draw any unwanted attention from investigators, as
content is commonly shared between users on the Steam
network. By using the built-in tools, packaging, and sharing
functionality, Steam is an all in one tool for hiding and
transmitting data using video game files.

B. Steganography

In the realm of data hiding, there are two main approaches
to data obfuscation. The first and most common approach is
encryption. All encryption techniques follow the same basic
strategy: data is sent through an encryption algorithm in order
to generate ciphertext, then encrypted message is sent or
stored for the recipient, and the ciphertext is finally decrypted
with the key. The security of data depends entirely on the
encryption algorithm and how well key is kept secure. An
unintended recipient is able to see the ciphertext, but they
cannot access the original information without the key.
Steganography utilizes a different approach to data security.
Rather than transforming data into an unreadable form,
steganography hides data inside of a benign secondary piece
of data. When data is hidden in this way, onlookers are
unaware that there is any data hidden at all. Steganography is
thus a form of security through obscurity. Other than the
sender and receiver, nobody suspects that a message has been
transmitted. Hiding data inside of Source game files is
therefore a form of steganography.

C. Embedding Text with Brushes

Embedding data with brushes is the most straightforward
method of obfuscation. To accomplish this, a malicious user
can simply create a new brush and shape it in such a way as to
form the words or letters that compose the hidden message. By
adding several brushes, the message can be expanded from a
single letter or word to a larger collection of text. While
brushes are initially set as primitive shapes such as rectangles
or cubes, more complicated solids can be created by utilizing
Hammer's built in vertex and face edit tools, thus adding more
tools to the malicious user's arsenal. Hiding text in Source
games via brushes is a great tool for users who wish to
obfuscate or share messages without being seen. The
advantage of using this approach as opposed to standard
encryption is that an investigator or onlooker will not be able

to detect that there is data hidden in the level. Even if an
investigator detects that data has been hidden in the game
files, the data is untraceable on disk as it exists only in the
geometry of the level. The main disadvantage of this approach
is that it is tedious. It is also impractical with large amounts of
information. For small messages, however, this approach is
ideal.

D. Embedding Text with Overlays

Game overlays are messages and dialogs which appear in-
game as the player navigates through the game map. They are
typically used to provide a player with important information,
hints, or instructions. A malicious user may manipulate this
functionality to embed messages which have no bearing on the
game, but are instead intended as hidden data. In order to
embed and hide in game text overlays, two entities are utilized
at a fixed point in the map: env_instructor_hint and
info_target.

Env_instructor_hint is a point entity in the Left 4 Dead
version of the Source engine [20]. This entity exists to provide
in-game hints for players via a popup on screen. This popup is
primarily text based, although a small image may be inserted.
By using this entity and creating custom text, any message can
be embedded in the game. Any number of these entities can be
added to a given level, creating a virtually limitless space for
text to be hidden.

After inserting an env_instructor_hint into the map, the
entity can be customized through several variable attributes in
Hammer. The most useful of these variables is Caption.
Caption holds the text that is ultimately displayed on screen
and is where a malicious individual can embed hidden
messages. This text can be combined with one of many
predefined images that are included in the Onscreen Icon
variable. There are many other variables within
env_instructor_hint which define the type of text, size, color,
and pulsation, and other attributes. With this entity alone, a
hidden message can be easily embedded in a map which is as
simple as a cube with the player inside.

Although env_instructor_hint is the mechanism used for
hiding messages, it does not exist on its own. The
env_instructor_hint entity does not yet have a physical place
in the map to display. Info_target serves this purpose.
Info_target is the physical placeholder to which
env_instructor_hint is bound [21]. Wherever the info_target
entity is placed is where the user will see the text defined in
env_instructor_hint displayed on screen. Combining these two
entities can be useful for hiding data in a specific location in a
map that the intended user knows to look for. By utilizing
env_instructor_hint and info_target, malicious users can
transform a custom game map into a container filled with
malicious text messages.

E. Embedding Images with Textures

Child pornography is one of the most grievous cybercrimes
facing law enforcement and digital forensic investigators.

These investigators analyze systems for this type of content to
expose the offenders. Malicious users employ encryption,
steganography, and other means of obfuscation to thwart
investigator's attempts to uncover the proper evidence to
convict these criminals in the court of law. Hammer can also
be used as a tool to hide potentially illegal or otherwise
malicious images.

While embedding text into a Source map file is fairly
straightforward, adding images requires more involved work.
Any image applied to a surface or brush in a map is referred to
as a texture. To begin examining how these files are hidden, it
is necessary to understand how the Source engine handles
images. Most images are saved as predefined file types that
are familiar to most computer users. Examples of these include
JPEG, PNG, and GIF. The Source engine does not interface
with these types of images directly. Instead, it uses a
proprietary format: VTF.

Valve Texture File (VTF) files are stored in a format
different than more widely used image formats in several key
areas. The most notable characteristic of the VTF format is
that the total size of the image must be a power of two as
measured in pixels. For example, images must be 2x2, 4x4,
8x8, 16x16, and so on. The dependency on square images can
be a hindrance to users embedding data; however most images
can be made square through selective cropping or the addition
of white space. The reason for the reliance on square images is
the presence of mipmap data in the VTF file. Mipmaps are
smaller, lower resolution versions of the original image also
stored in the file. These mipmaps are used by the Source
engine to render the image differently at varying distances in
the game. The lower resolution images are used at the farthest
distance, with increasing resolution as the image comes closer
on screen. This improves rendering speed and processing
performance of the game. Each respective mipmap is half of
the previous mipmap, creating the reliance on a power of two
size constraint. VTF files also contain other additional
information used by the Source engine, including a bump map
scale, a low resolution copy of the VTF for color rendering,
and a reflectivity value used by the VRAD program in
determining final rendering appearance [22]. More complex
textures such as environment maps and volumetric textures
include even more data, all of which is stored in the VTF file.

Hammer does not include a tool for creating custom
textures that are not already bundled with the engine. Luckily
third party tools exist to convert common image file types to
VTF files. One of the most prevalent of these is VTFEdit.
VTFEdit is a free, open source tool which can create a VTF
file from almost any popular image file type. It can also edit
flags and attributes within a VTF file. VTFEdit utilizes the
open source VTFLib library. VTFEdit not only can convert to
and from the VTF file format, but has additional functionality
which allows it to edit VMT files discussed in detail below.
VTFEdit has the ability to handle files in batches as well as
create all mipmaps and VTF file headers utilized by the
Source engine [23].

The Source engine does not only use VTF files for
rendering textures in-game. Each texture file is also paired
with a corresponding Valve Material Type (VMT) file. These
files are text based files which serve as a set of metadata for
the texture they correspond to. This allows the Source engine
to determine how to render the textures properly. Attributes
included in VMT files include texture names, physical surface
types, shader parameters, fallbacks, and proxies [24].
Although these files are usually fairly simple, they can be used
to hide either plain text or encrypted text. While this type of
text would be easily viewable on disk to an investigator, it can
still serve as an additional container for malicious data.

Once a texture has been generated from VTFEdit, it can
then be embedded into the map within Hammer. This is a
simple process done through Hammer's map creation interface.
The texture application can be invoked to navigate through the
engine's built in textures. Depending on where the custom
texture is stored, the creator can navigate to the directory and
select the custom texture. Applying the texture is as simple as
selecting the appropriate brush or entity and clicking the
Apply Current Texture button. Once applied, many of the
texture's properties can be edited from within Hammer. Once
compiled, the texture and any hidden information it or its
corresponding VMT file contains is permanently embedded in
the level.

The file extension used by an image on disk is of little
importance to an investigator. The investigator's primary
objective is to identify the file format based on its content
rather than file extension. This is done commonly though the
use of file signatures. JPEG images, for instance, have a
common header and footer in the code of every image. This
header and footer do not change due to a change in the file
extension. Investigators can utilize this fact by searching for
the file header rather than the file type on a suspect system. In
the case of JPEG, the file signature is 'ÿØÿà', or FF D8 FF E0
in hexadecimal. When converting an image to a VTF file, the
file signature and header previously used by the image is lost.
This is true for not only JPEGs, but all other file types. By
eliminating these file signatures, an investigator's most
common and effective method of uncovering images is proven
ineffective. This makes the recovery of illegal or malicious
files hidden within a Source game level a greater challenge.
The reliance on outside tools and the complexity of the
process required to embed custom images makes this method
less than ideal for a malicious user. The time required to
perform this type of steganography is great.

F. Distributing Maps

After a map and all of the corresponding assets are created,
packaging and distribution can take place. Valve has a
proprietary file format for this process, called Valve Pack
(VPK). This file format is relatively new replacing the
outdated GFC format formerly used in Source games [25].
VPK files are packages which contain all of the necessary
components for custom maps to be installed and run. This

includes the map's BSP files, navigation logic files, textures,
and a few identifying pieces of metadata used by the in-game
UI. It is important to note that VPK data is archived, and
therefore typically tightly packed. This format allows
developers to share their data through a single file download
which makes download and installation of game content
seamless and easy for the end user. In order to create a VPK
file, Valve has released a free tool as part of the Source engine
SDK. This tool, simply called VPK, uses a directory
containing the game files to be packaged as input and outputs
the completed package. It can be run as a command line tool,
giving it the ability to be used in batch programs to output
large amount of game packages. It can also be used to list and
modify the contents of a VPK file [26]. Game users can either
double-click the VPK package to install it into the game via
the operating system or manually add it by placing it in the
'addons' subdirectory of the game's installation files. For an
investigator, this file provides a one stop shop for potentially
malicious game content.

IV. INVESTIGATING SOURCE GAMES

A. The Forensic Process and Tools

As demonstrated throughout this paper, Steam maps can be
used to store and transmit sensitive and potentially dangerous
and illegal data. From an investigative standpoint, these files
hold a potential treasure trove of information and evidence. As
an investigator, extracting and examining this evidence is
crucial. There are many tools which can be used accomplish
this task. One of the most popular and widely used of them is
the Forensic Tool Kit (FTK).

FTK is a piece of enterprise level digital forensics software
used by many investigators in the field and in crime labs
across the U.S. This software package has been forensically
tested and is verified as sound for use in investigations. In
order to assume the role of an investigator, Steam game files
will be examined with FTK. The files used for this process
were extracted from a hard drive and archived, which is
typical of what an investigator will do with a suspect machine,
rather than working with a live system.

One of the main problems for investigators of Steam game
files is the sheer amount of data to be processed. Every texture
and map file potentially holds condemning information.
Deciding which of these files hold evidence is the first
obstacle to overcome as every Source based game comes pre-
packaged with hundreds of textures and many map files. It is
therefore the obligation of an investigator to determine which
of these files hold malicious data and which are benign.

The first order of business when investigating Source game
files is to determine how they are stored. As stated above,
game files may be stored as a single archived VPK file or as a
series of directories in the installation location of the game. To
locate VPK files on disk, an investigator can search for all
files with the VPK extension. In the case of a suspect changing
the file extension to cover up data, the investigator can also
find these files by the VPK signature, 0x55aa1234. Once the

VPK file has been found, tools can be used to unpack it to its
constituent file structure. The unpacked file structure is much
easier to work with, allowing an investigator to search in the
appropriate folders for the files they need. One of the tools
available to unpack these files is GCFScape.

GCFScape is a free utility that is part of the Nem's Tools
pack of Source map editing and enhancement software [27]. It
is open source and can be used freely by anyone. This tool
allows users to view, modify, and extract the underlying file
structure from VPK files. For an investigator, it can be used
for its extraction functionality. Although it is not a fully
verified forensic tool, its open source nature could provide for
verification in the future should an investigator need to pursue
this avenue. After GFCScape has been used to extract the
custom map files from a VPK file, they can then be examined
by the investigator. Unfortunately, FTK cannot natively
display the visual contents of any of the proprietary Valve
formats, so hexadecimal searching is the most efficient way to
sort through these files.

B. Investigating Data Hidden With Brushes

It has been shown that data can be hidden in a level by
manipulating brushes and geometry to create words.
Unfortunately, this type of hidden data can hardly be
uncovered by an investigator. The level geometry is stored in
integer format based on its vertices and their location in the
map. This information is useless on disk to an investigator.
The only way to view and use this data is to load the map into
the game and run it. This method of an investigation is often
not feasible or practical for an investigator; however it may be
used as a last resort.

C. Investigating Data Hidden with Overlays

An unpacked VPK file contains many resources, including
textures, maps, models, and metadata. Each of these files may
contain evidence hidden by one or many of the above
methods. The easiest of these to recover is embedded
messages hidden via in game pop ups. These messages are
stored in the mapname.bsp file. By examining the hexadecimal
contents of this file, important pieces of information can be
uncovered.

Within a BSP file, entities are defined in entity lumps.
Each of these lumps contains defining information about an
entity, including its location and properties. This information
is stored in plaintext as it appears in game. By using the
identifying fields in the entity lump, an investigator can
recover hidden messages. Messages hidden with the
env_instructor_hint entity as discussed previously can be
found by searching for the keyword hint_caption. The
hint_caption field contains the actual text displayed on screen
in game as a popup hint. In the BSP, an example of a
recovered hint_caption is:

"hint_caption" "Any message may be hidden
in game as text!"

By recovering all instances of this keyword, an
investigator can uncover hidden messages from a Source map
hidden using env_instructor_hint.

D. Investigating Data Hidden with Textures

Investigative parsing of map data for hidden images can be
accomplished in a similar manner to searching for text data.
By utilizing the file structure and container formats, an
investigator can identify files and then extract them for
investigation. Because images included in game files do not
have common file signatures, they will not be properly flagged
in most investigative software. This limitation creates the
necessity for an investigator to manually find these files using
the file signatures.

To uncover hidden images in Source game files, the
investigator needs to first identify custom textures embedded
in the map. This can be done by first expanding the VPK file
with GCFScape as discussed above. Once expanded, all
custom textures can be located in the materials directory. By
utilizing the underlying file structure to identify custom
textures, the investigator can effectively narrow down the
search for suspicions textures from every texture in the game
to a small fraction of that number. Alternatively, the
investigator can find all VTF texture files by searching for the
hexadecimal VTF file signature "VTF\0".

With the suspect texture files identified, they can then be
inspected by the investigator. Again, FTK does not support
natively viewing these files. An outside program such as
VTFEdit would need to be used to open this file. Any
malicious images can be viewed and exported from this
program. While VTFEdit is not forensically verified, it can
still be utilized in an investigator as no digital forensic suites
can currently parse this data natively.

V. CONCLUSION AND FUTURE WORK

The field of digital forensics is a double bladed sword. On
one side there is the concept of privacy, as individuals believe
that they have the right to protect their own data however they
see fit. This can include encryption, steganography, and other
means of obfuscation. On the other side, there are
investigators and law enforcement attempting to prevent and
uncover individuals using these means to conduct illegal or
malicious activity.

In the name of individual privacy, many tools and software
have been developed in order to hide or otherwise prevent
viewing or tampering by anyone other than those intended.
Many file types have known exploitations or loopholes which
allow for data to be manipulated in order to protect privacy.
Although this is a pain for investigators, it is a necessary evil.
One vessel for data hiding that has not been developed or
researched in depth is video game data.

This paper demonstrates both ends of the spectrum of data
privacy and security. It shows how a concern citizen may use
game files to store information that they want to secure from

prying eyes. While it is true that this privilege may be abused
in a malicious way, this fact is not guaranteed. This paper also
demonstrates how an investigator may conduct an
investigation in the face of these new techniques for data
hiding in video game files. It further demonstrates the need for
investigative technologies to continue growth in order to keep
up with the multitude of computer crimes being committed
constantly across the nation and the world.

Computer crime is an ever-growing, ever changing
venture. Just as law enforcement has caught up to the current
criminal technology, new technology is introduced. This
ongoing game of cat and mouse necessitates the constant
development of tools and methodologies for fighting computer
crime. This concept can be demonstrated with the utilization
of Steam and Source based games to obfuscate data as well as
the need for tools to address the issue of hidden data.

Three main methodologies for hiding data in source games
are demonstrated in this paper; however there are potentially
countless more methods available. For instance,
steganography in the raw data files of Source maps can be
further investigated and implemented as well as data in
transmission during online or LAN games. This paper also
focuses on one game engine only. There are many more game
platforms and engines such as Origin, Stardock, and Gamefly
which may have hidden data which also need further research.

On the investigative front, there is also room for future
research and development. As mentioned above, neither FTK
nor any other investigative tools can natively display or
manipulate Source game files. Tools to analyze data in
transmission from these games are also necessary to intercept
and analyze potentially illegal data in transfer. The addition of
this functionality to these tools will greatly improve their
ability to investigate and process game files for hidden data.
Forensically testing and verifying these programs will create
tools which can be used in court to convict criminals or
exonerate innocents.

REFERENCES
[1] M. Fossi and T. Mack, "Symantec Internet Security Threat Report:

Trends for 2010," Symantec Corp., Moantain View, CA, Tech. Rep. 21
182883, Apr. 2011

[2] Entertainment Software Association, (2011). Essential Facts about the
Computer And Video Game Industry [Online]. Available: http://www.
theesa.com/facts/pdfs/ESA_EF_2011.pdf.

[3] Entertainment Software Association, (2011). Industry Facts: Economic
Data [Online]. Available: http://www.theesa.com/facts/econdata.asp.

[4] Valve Corporation, (2010). Welcome to Valve [Online]. Available:
http://www.valvesoftware.com/company/index.html.

[5] T. Bayer, (2010). 14 years of Quake Engine: The Famous Games with id
Technology [Online]. Available: http://www.pcgameshardware.com/
aid,687947/14-years-of-Quake-Engine-The-famous-games-with-id-
Technology/News/

[6] M. Thomsen, (2009). Ode to Source: A History of Valve's Tireless
Game Engine [Online]. Available: http://pc.ign.com/articles/102/
1027317p1.html.

[7] A. Capriole and J. Phillips, (2008). The History of Valve [Online].
Available:http://planethalflife.gamespy.com/View.php?view=Articles.D
etail&id=121.

[8] Warf!y, (2011). About the Steamless CS Project [Online]. Available:
http://v5.steamlessproject.nl/index.php?page=about.

[9] Valve Corporation, (2010). Games [Online]. Available: http://store.
steampowered.com/search/#category1=998&advanced=0&sort_order=A
SC&page=1.

[10] K. Mudgal, (2012). Valve Releases PR; Steam Userbase Doubles in
2011, Big Picture Mode Coming Soon [Online]. Available: http://
gamingbolt.com/valve-releases-pr-steam-userbase-doubles-in-2011-big-
picture-mode-coming-soon.

[11] T. Senior, (2012). Steam Hits Five Million Concurrent Players [Online].
Available:http://www.pcgamer.com/2012/01/03/steam-hits-five-million-
concurrent-players/.

[12] K. Graft, (2009). Stardock Reveals Impulse, Steam Market Share
Estimates [Online].Available:http://www.gamasutra.com/php-bin/news_
index. php?story=26158.

[13] Hammer Editor Version History (2010) [Online]. Available:https://
developer.valvesoftware.com/wiki/Hammer_Editor_version_history.

[14] Mapping Overview (2010) [Online]. Available: https://developer.
valvesoftware.com/wiki/Introduction_to_Editing.

[15] VMF Documentation (2012) [Online]. Available: https://developer.
valvesoftware.com/wiki/VMF_documentation.

[16] Hammer Game Configurations (2011) [Online]. Available: https://
developer.valvesoftware.com/wiki/Game_Configurations.

[17] VBSP (2011) [Online]. Available: https://developer.valvesoftware.com/
wiki/Vbsp.

[18] VVIS (2011) [Online]. Available: https://developer.valvesoftware.com/
wiki/Vvis.

[19] VRAD (2012) [Online]. Available: https://developer.valvesoftware.com/
wiki/Vrad.

[20] Env_Instructor_Hint (2011) [Online]. Available: https://developer.
valvesoftware.com/wiki/Env_instructor_hint.

[21] Info_target (2012) [Online]. Available: https://developer.valvesoftware.
com/wiki/Info_target.

[22] Valve Texture Format (2011) [Online]. Available: https://developer.
valvesoftware.com/wiki/Valve_Texture_Format.

[23] VTFEdit (2011) [Online]. Available: https://developer.valvesoftware.
com/wiki/VTFEdit.

[24] Material (2011) [Online]. Available: https://developer.valvesoftware.
com/wiki/Material.

[25] VPK File Format (2011) [Online]. Available: https://developer.
valvesoftware.com/wiki/VPK_File_Format.

[26] VPK (2011) [Online]. Available: https://developer.valvesoftware.com/
wiki/VPK.

[27] R. Gregg, (2006). AboutGCFScape [Online]. Available: http://nemesis.
thewavelength.net/index.php?p=25.

