
Optimizing the Video Game Multi-Jump:
Player Strategy, AI, and Level Design

Aaron M. Broussard, Martin E. Malandro, and Abagayle Serreyn

Abstract. This article initiates the mathematical study of multi-jumping in video games.
We begin by proving a necessary, and frequently sufficient, condition for a multi-jump to
be optimal, i.e., achieve the highest possible height after traveling a given horizontal distance.
We then give strategies that can be used by human players and by AI to select successful multi-
jumps in real time. We also show how a video game designer can build the ground around a
platform to guarantee that the platform is reachable—or unreachable—by a multi-jump begin-
ning at any point on the ground.

1. INTRODUCTION. In many platform-based video games the player is able to per-
form a double jump, which is a normal jump followed by a second jump initiated in
midair without the aid of a platform. The arc of the second jump might be identical
to that of the first, it might be a smaller version of the first and otherwise be subject
to the same gravitational pull, or it might have its own arc and obey a completely dif-
ferent gravitational law. For example, Capcom R©’s Devil May CryTM1 features the first
kind of double jump, Konami R©’s Castlevania R©: Symphony of the NightTM features
the second, and Klei Entertainment R©’s Mark of the NinjaTM features the third. In this
paper we study multi-jumps, which generalize double jumps. A multi-jump is a finite
sequence of jumps where the first jump is initiated from the ground and the rest are ini-
tiated in midair. The number of jumps in a multi-jump is the length of the multi-jump,
so a double jump is a multi-jump of length two. Several video games, such as Chair
Entertainment Group R©’s Shadow ComplexTM and Nintendo R©’s Super Smash Bros.TM

Melee, feature triple jumps or multi-jumps of even longer length.
The basic problem we consider in this paper is the following. Suppose that a char-

acter in a two-dimensional side-scrolling video game wishes to use a multi-jump to
jump to the right from a fixed starting point across a gap and land on a fixed platform.
By a platform we always mean an impenetrable horizontal platform (so the charac-
ter cannot pass through the bottom of the platform) that begins at a point and extends
indefinitely to the right. In most games the character can control the horizontal velocity
component of her jumps. We assume that the target platform begins far enough to the
right from the character that she will utilize the maximum horizontal velocity possible
for each jump. We therefore assume that the character has a known finite sequence of
jump arcs available to her and faces the problem of selecting when to jump in midair,
i.e., to switch from the arc of one jump to the next, so as to land on the platform. See
Figures 1–2, in which the character can jump twice in midair.

Provided the platform is reachable by a multi-jump, we give strategies for solv-
ing this problem on the fly for both player-controlled and artificial intelligence (AI)-
controlled characters. In the simplest situation all jumps available to the character are
equal and fully concave (Definition 5). In this situation we give a simple strategy (the
line method) that is usable by both players and AI. In our experience the majority of

http://dx.doi.org/10.4169/amer.math.monthly.123.10.1013
MSC: Primary 90C27, Secondary 91A55; 97A20

1All products, company names, brand names, and trademarks are properties of their respective owners.

December 2016] OPTIMIZING MULTI-JUMPS 1013

Figure 1. Character wishes to jump to distant platform

(A) An unsuccessful multi-jump (B) A successful multi-jump

Figure 2. Multi-jumps

games featuring multi-jumps are covered by this situation. We give two further strate-
gies for AI-controlled characters in more-complicated situations. Our first AI strategy
is very general, in that it applies to any collection of standard jump functions (Defini-
tion 1). We also give a faster (less computationally intensive) AI strategy for collec-
tions of standard jump functions whose derivative inverses are known and computable
exactly.

We have evidence that our AI results are new, or at least previously unknown to
game developers: We have observed that the multi-jumping AI in Super Smash Bros.TM

Melee is not optimal, in that there are situations in the game where the AI will con-
sistently select a multi-jump that fails to cross a gap even though such a multi-jump is
possible. The more recent games in Nintendo R©’s Super Smash Bros.TM series (Super
Smash Bros.TM Brawl and Super Smash Bros.TM for Wii UTM) feature better, but still
not optimal, multi-jumping AI. Due to the online nature of Super Smash Bros.TM for
Wii UTM it is possible that the AI in this game could be improved in a future update.
While multi-jumping is a common feature in video games, the only games we could
find that feature real-time multi-jumping AI are the games in the Super Smash Bros.TM

series.
In reality, platforms have finite length. We use the assumption of infinite-length plat-

forms only to justify the correctness of our player and AI strategies, and if our strate-
gies would cause a character to overshoot a finite-length platform, the same strategies
could be applied to land successfully on such a platform by either lowering the hori-
zontal velocity of the character or by initiating the multi-jump earlier, i.e., farther to
the left.

We also consider applications to game level design. Given a fixed platform and a
fixed sequence of jumps available to the player, we consider the problem of how
to design the ground around the platform so that the platform is reachable—or
unreachable—by a multi-jump starting at any point on the ground. Platform-based
adventure games where the player gains new abilities as she explores the map and
uses these new powers to reach previously inaccessible areas are frequently referred

1014 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 123

to in the gaming community as Metroidvanias [9]. (This term is a combination of
MetroidTM and Castlevania R©, which are two famous series of games featuring similar
gameplay.) In a typical Metroidvania the player eventually gains the ability to jump
a second or third time in midair. Our results can be used, for example, to place a
platform just tantalizingly out of reach of a player who is only able to jump once (or
twice), but which is easily reached when the player gains the ability to jump a second
(or third) time.

We note that while we carry out our analysis in two dimensions, our results are
directly applicable to multi-jumps occurring in a two-dimensional plane in any three-
dimensional game.

The study of the complexity of games and the development of AI for playing
games have rich histories. For instance, computers have been playing games of strat-
egy against humans for over 35 years, and have become sophisticated enough to
challenge the world’s best players. IBM R©’s Deep Blue R© famously bested former
World Chess Champion Garry Kasparov in a 1997 series [4]. More recently, Google R©

DeepMindTM’s AlphaGo AI [6] beat Lee Sedol, the world’s top Go player over the pre-
vious decade, four to one in a five-game series [2]. There is also a wealth of research
directly applicable to video game AI. For instance, pathfinding algorithms such as the
A∗ algorithm [3] are important for AI in real-time strategy and first-person shooter
games. As for complexity, a number of video games, including generalized versions of
MetroidTM, have been shown to be NP-hard—see [1] and the references therein. To our
knowledge this paper marks the first time that the problem of optimal multi-jumping
in video games has been studied.

2. JUMP FUNCTIONS AND MULTI-JUMPS. Jump functions are the building
blocks of multi-jumps. The graph of a jump function captures the trajectory that a
character (as represented by a point in space) would follow by starting at the origin
and jumping to the right.

Definition 1. A jump function is a continuous function f : R≥0 :→ R for which
f (0) = 0 and ∃c > 0 such that:

• f is strictly increasing on [0, c], and
• f is continuously differentiable on [c, ∞), with f ′(x) ≤ 0 for x ∈ (c, ∞) (so f is

weakly decreasing on [c, ∞)) and f ′
+(c) = 0.

We say that f peaks at c. Additionally if f is concave down (i.e., f ′ is strictly decreas-
ing) on [c, ∞) and limx→∞ f ′(x) = −∞, then we say f is a standard jump function.

This terminology is our own, as jumps in video games have not been studied for-
mally before. Note that if f is a standard jump function, then f is automatically strictly
decreasing on [c, ∞) and limx→∞ f (x) = −∞. By definition, if f is a jump function
we have f ′

+(c) = 0. For convenience we will write f ′(c) = 0, which will make our
central result (Theorem 2) easier to state.

Examples of graphs of both standard and nonstandard jump functions may be found
in Figure 3. It is easy to generate jump functions. For instance, let a, c, k > 0, r > 1,
and let g(x) be any strictly increasing continuous function for which g(0) = 0 and
g(c) = k. Then

f (x) =
{

g(x) if 0 ≤ x < c,
−a(x − c)r + k if x ≥ c

(1)

December 2016] OPTIMIZING MULTI-JUMPS 1015

c
x

y

(A) Standard jump function

c
x

y

(B) Standard jump function

c
x

y

(C) Nonstandard jump function

c
x

y

(D) Nonstandard jump function

Figure 3. Examples of jump function graphs

is a standard jump function that peaks at c. Jump functions of the form (1) will appear
again in Sections 4, 5, and 6.

Unless otherwise stated, without loss of generality we assume that the character
initiates her multi-jump at the origin (0, 0). Fix a sequence F = (f1, . . . , fn) of jump
functions.

Definition. If (x1, . . . , xn−1) is a sequence of nonnegative real numbers, then the
piecewise function F(x1,...,xn−1) : R≥0 → R given by

F(x1,...,xn−1)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) if 0 ≤ x ≤ x1,

f2(x − x1) + f1(x1) if x1 ≤ x ≤ x1 + x2,

f3(x − x1 − x2) + f2(x2) + f1(x1) if x1 + x2 ≤ x ≤ x1 + x2 + x3,
...

fn−1(x −∑n−2
i=1 xi) + ∑n−2

i=1 fi (xi) if
∑n−2

i=1 xi ≤ x ≤ ∑n−1
i=1 xi ,

fn(x −∑n−1
i=1 xi) +∑n−1

i=1 fi(xi) if
∑n−1

i=1 xi ≤ x

is called the multi-jump defined by (x1, . . . , xn−1).

The graph of F(x1,...,xn−1) captures the trajectory a character would follow by starting
at the origin and jumping to the right n times, following the arcs of f1 through fn in
sequence, where the arc of the first jump is followed for x1 horizontal units, the arc of
the second is followed for x2 horizontal units, and so on, and the arc of fn is followed
indefinitely.

Given xn ≥ 0, we denote by F(x1,...,xn) the restriction of F(x1,...,xn−1) to the domain
[0,
∑n

i=1 xi]. That is, the graph of F(x1,...,xn) is the same as the graph of F(x1,...,xn−1),
except that in F(x1,...,xn) the final arc of the multi-jump is followed for only xn units.
The x1, . . . , xn are called jump points, and (x1 + · · · + xn, F(x1,...,xn)(x1 + · · · + xn))

is called the ending point of the multi-jump. Note that the final jump point xn does
not initiate a new jump, and that the ending point of a multi-jump might be in midair.

1016 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 123

3 6

4.5

x

y

y = f1 (x)

2 4

4

x

y

y = f2 (x)

1.5 3

2.25
x

y

y = f3 (x)

0 3.5 5.5
0

4.375

8.375

y = F (3.5,2) (x)

0 4 6.5 8.5
0

4

7.75

9.75

y = F (4,2.5,2) (x)

Figure 4. Graphs of F(x1,x2) and F(x1,x2,x3) for the jump functions in the Main Example, together with the
platform beginning at (8.5, 9.25)

Also note that F(x1,...,xn)(x1 + · · · + xn) = f (x1) + · · · f (xn), and that the maximum
possible height achievable by a multi-jump is f1(c1) + · · · + fn(cn), achievable by
jumping at peaks—that is, by selecting the jump points (c1, . . . , cn). In summary, given
a sequence of n jump functions, a sequence of n − 1 jump points defines a multi-jump
with no ending point, while a sequence of n jump points defines a multi-jump with an
ending point. In general n can be any fixed integer n ≥ 1. In this paper we will draw
all of our figures with n = 3.

Main Example, Part 1. For the Main Example let us take the following sequence of
jump functions. Let

f1(x) = −0.5(x − 3)2 + 4.5,

f2(x) = −(x − 2)2 + 4,

f3(x) = −(x − 1.5)2 + 2.25.

These functions are the building blocks for Figure 2, in which the multi-jumps begin
at (0, 0) and the distant platform begins at (8.5, 9.25). The graph in Figure 2(a) is the
graph of F(3.5,2), while the graph in Figure 2(b) is the graph of F(4,2.5,2), with domain
extended slightly to the right so that the final arc touches the platform. See Figure 4.

We note that there is no requirement for the fi to be quadratics (or even polynomi-
als) in general. We have chosen them to all be quadratics for this example simply for
ease of hand calculations later in the paper.

3. THE FUNDAMENTAL THEOREM. In this section we state and prove what
we call the fundamental theorem of multi-jumping optimization. This theorem applies
to all jump functions and has far-reaching consequences, as it and its primary con-
sequence (Theorem 3) form the basis for the design of all of our player and AI

December 2016] OPTIMIZING MULTI-JUMPS 1017

0 3.5 5.5 8.5

0

4.375

8.375

0 4 6.5 8.5

0

4

7.75

9.75

F (3.5,2,3) is a non-optimal
multi-jump ending at x = 8.5.

F (4,2.5,2) is the unique opti-
mal multi-jump ending at x =
8.5; hmax (8.5) = 9.75.

Figure 5. Optimal and nonoptimal multi-jumps, drawn together with the platform beginning at (8.5, 9.25) and
tangent lines at jump points

strategies and are integral ingredients in our proofs throughout the rest of the paper.
Let (f1, . . . , fn) be a sequence of jump functions, where fi peaks at ci ∈ R>0. Let
C = c1 + · · · + cn . Recall our assumption that multi-jumps begin at the origin (0, 0).

Theorem 2 (The fundamental theorem of multi-jumping optimization). Let d ∈ R

such that d ≥ C. Then there exists a largest value hmax(d) ∈ R such that the platform
beginning at (d, hmax(d)) is reachable by a multi-jump, and if (x1, . . . , xn) is any
sequence of jump points for which F(x1,...,xn) ends at (d, hmax(d)), then xi ≥ ci for
i ∈ {1, . . . , n}, and

f ′
1(x1) = f ′

2(x2) = · · · = f ′
n(xn).

Remark. In summary, the fundamental theorem says that for a multi-jump to be
optimal—that is, achieve the maximum possible height after traveling a specified
horizontal distance d—the slope of the tangent line to the character’s trajectory at
the ending point of the multi-jump must equal the slope of the tangent line to her tra-
jectory at every jump point along the way. See Figure 5, which revisits the multi-jumps
from Figure 4. (In Figure 5, that F(4,2.5,2) is in fact optimal and is the unique optimal
multi-jump ending at x = 8.5 will be shown in the Main Example, Part 2 at the end of
this section.)

Optimal multi-jumps corresponding to a sequence of increasing d values are shown
in Figure 6. This figure demonstrates the interplay between d and hmax(d), in that
hmax(d) is a (generally weakly) decreasing function of d. This figure also shows
that hmax(d) can be negative when d is large enough. From a gameplay perspec-
tive hmax(d) being negative makes perfect sense—sometimes the target platform is
at a lower height than the character’s starting position. Also note from this figure that
when hmax(d) = 0, the jump points for an optimal multi-jump do not have to occur
along the line y = 0.

Proof of Theorem 2. First we show the existence of hmax(d) using a bit of topology.
Let X = [0, d]n ⊂ R

n and let Y = {(x1, . . . , xn) ∈ X : x1 + · · · + xn = d}.
Y is an n − 1-simplex, so Y is compact. Since the function H : [0, ∞)n → R given

by H(x1, . . . , xn) = f1(x1) + · · · + fn(xn) is continuous, and the continuous image of

1018 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 123

0 3 5 6.5

0

10.75

0 5 8 10.5

0

6.75

0

0

p1 p2 p3

hmax(6.5 + √43) = 0

p1 =

p2 =

p3 =

(3 + √ 43
2 , − .875)

(5 + 3 √43
4 , .4375)

(6.5 + √43, 0)

0 7 11 14.5

− 5.25

0

hmax (6.5) = 10.75 hmax (10.5) = 6.75

hmax (14.5) = –5.25

Figure 6. Optimal multi-jumps corresponding to selected d-values; jump functions from the Main Example

a compact set is compact, H attains a maximum value on Y . This maximum value is
by definition hmax(d).

Let (x1, . . . , xn) be a sequence of jump points such that F(x1,...,xn) ends at (d, hmax(d)),
i.e., for which x1 + · · · + xn = d and f1(x1) + · · · + fn(xn) = hmax(d).

Next we show that xi ≥ ci for all i . Suppose not, so for some i we have 0 ≤ xi < ci .
Since x1 + · · · + xn = d ≥ C = c1 + · · · + cn , for some j we have x j > c j . Let ε > 0
such that xi + ε < ci and x j − ε > c j . Then the sequence of jump points (x1, . . . , xn)

given by

xk =

⎧⎪⎨
⎪⎩

xi + ε if k = i,
x j − ε if k = j,
xk otherwise

has the property that x1 + · · · + xn = d. Furthermore, since fi (xi) > fi (xi) and
f j (x j) ≥ f j (x j) we have f1(x1) + · · · + fn(xn) > f1(x1) + · · · + fn(xn) = hmax(d),
contradicting the maximality of hmax(d). Therefore xi ≥ ci for all i .

Finally we show that f ′
1(x1) = f ′

2(x2) = · · · = f ′
n(xn).

If xi > ci for all i we may apply the method of Lagrange multipliers in R
n (see,

e.g., [7, Ex. 5-16]) to the domain (c1, ∞) × · · · × (cn, ∞) ⊂ R
n of the objective func-

tion H(x1, . . . , xn) = f1(x1) + · · · + fn(xn), subject to the constraint g(x1, . . . , xn) =

December 2016] OPTIMIZING MULTI-JUMPS 1019

0, where g(x1, . . . , xn) = x1 + · · · + xn − d. Applying Lagrange multipliers, we
immediately obtain the system of equations

f ′
1(x1) = λ,

f ′
2(x2) = λ,

...

f ′
n(xn) = λ

for some λ ∈ R, so λ = f ′
1(x1) = f ′

2(x2) = · · · = f ′
n(xn).

On the other hand, if xi = ci for some i , then f ′
i (xi) = 0. Suppose for the sake of

contradiction that f ′
j (x j) �= 0 for some j . Then x j > c j and f ′

j (x j) < 0. For the sake
of clarity we give the idea of the rest of the argument, which can be made rigorous
in a straightforward, albeit somewhat lengthy manner. Since f ′

i and f ′
j are continuous

on [ci , ∞) and [c j , ∞), f ′
i (xi) = 0, and f ′

j (x j) < 0, it is possible to bump xi slightly
to the right and x j slightly to the left to arrive at a contradiction. In particular, due
to the continuity of the derivatives it is possible to choose points xi and x j such that
xi > xi , c j < x j < x j , xi + x j = xi + x j , and fi (xi) + f j (x j) > fi(xi) + f j (x j). It
then immediately follows that for the sequence of jump points given by (x1, . . . , xn)

(where xk = xk for k �= i, j), we have x1 + · · · + xn = d and f1(x1) + · · · + fn(xn) >

f1(x1) + · · · + fn(xn) = hmax(d), contradicting the maximality of hmax(d). It fol-
lows that 0 = f ′

1(x1) = f ′
2(x2) = · · · = f ′

n(xn), completing the proof.

The rest of the paper will focus on standard jump functions. While the fundamental
theorem provides a necessary condition for a multi-jump to be optimal, for standard
jump functions it is also sufficient, as the following very useful consequence demon-
strates.

Theorem 3. Suppose f1, . . . , fn are standard. Write f ′−1
i for the inverse of the restric-

tion of f ′
i to [ci , ∞). Let d ∈ R such that d ≥ C. Then for some unique x1 ≥ c1 we

have

d = x1 +
n∑

i=2

f ′−1
i (f ′

1(x1)),

hmax(d) = f1(x1) +
n∑

i=2

fi(f ′−1
i (f ′

1(x1))),

and the unique multi-jump ending at (d, hmax(d)) is defined by the sequence of jump
points

(x1, f ′−1
2 (f ′

1(x1)), . . . , f ′−1
n (f ′

1(x1)))

(i.e., the sequence (x1, x2, . . . , xn) for which f ′
1(x1) = f ′

2(x2) = · · · = f ′
n(xn)).

Proof. Since fi is standard, f ′
i restricted to [ci , ∞) is invertible, and as a function of

x1 ∈ [c1, ∞), the function x1 +∑n
i=2 f ′−1

i (f ′
1(x1)) is increasing, continuous, and has

range [C, ∞). Hence there exists unique x1 ≥ c1 such that d = x1 +∑n
i=2 f ′−1

i (f ′
1(x1)).

1020 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 123

Suppose the sequence of jump points (z1, . . . , zn) defines a multi-jump ending
at (d, hmax(d)). Then d = ∑n

i=1 zi and hmax(d) = ∑n
i=1 fi(zi). By the funda-

mental theorem zi ≥ ci for all i , and for i ≥ 2 we have f ′
1(z1) = f ′

i (zi). Hence
zi = f ′−1

i (f ′
1(z1)). Since

∑n
i=1 zi = d, we have z1 = x1, so

(z1, . . . , zn) = (x1, f ′−1
2 (f ′

1(x1)), . . . , f ′−1
n (f ′

1(x1)))

is the unique sequence of jump points defining a multi-jump ending at (d, hmax(d)).
Furthermore, we have hmax(d) = ∑n

i=1 fi (z1) = f1(x1) +∑n
i=2 fi (f ′−1

i (f ′
1(x1)).

Remark 4. For standard jump functions, Theorem 3 reduces the problem of finding
optimal multi-jumps to the problem of analyzing the function x1 +∑n

i=2 f ′−1
i (f ′

1(x1))

of the single variable x1.

Main Example, Part 2. The functions in the Main Example are all standard. Let us
use Theorem 3 to find hmax(8.5) as well as the jump points x1, x2, x3 such that the
multi-jump F(x1,x2,x3) ends at (8.5, hmax(8.5)). We compute

f ′
1(x) = −x + 3,

f ′
2(x) = −2x + 4, f ′−1

2 (x) = − x

2
+ 2,

f ′
3(x) = −2x + 3, f ′−1

3 (x) = − x

2
+ 3

2
.

We seek x1 such that x1 + f ′−1
2 (f ′

1(x1)) + f ′−1
3 (f ′

1(x1)) = 8.5, that is,

x1 +
(

−−x1 + 3

2
+ 2

)
+
(

−−x1 + 3

2
+ 3

2

)
= 8.5,

which yields x1 = 4. We then obtain x2 = f ′−1
2 (f ′

1(4)) = 2.5 and x3 = f ′−1
3 (f ′

1(4))

= 2. Finally we get

hmax(8.5) = f1(4) + f2(2.5) + f3(2) = 9.75,

so F(4,2.5,2) is the unique multi-jump ending at (8.5, hmax(8.5)) = (8.5, 9.75), as
shown in Figure 5. The jump points for the graphs in Figure 6 were computed in an
analogous fashion.

4. PLAYER STRATEGY.

Definition 5. A jump function f is fully concave if f is standard and f is concave
down on [0, ∞).

Of the jump functions appearing in Figure 3, only (A) is fully concave. Let
(f1, . . . , fn) be a sequence of jump functions, where fi peaks at ci . Let C = c1 +
· · · + cn . Fix d ≥ C and h ∈ R. Consider the problem of selecting a multi-jump to
reach a platform beginning at (d, h), assuming the platform is reachable. In this sec-
tion we give a simple and complete solution to this problem, implementable in real
time by human players (and AI), in the case that f1 = · · · = fn are fully concave jump
functions. This is the case for a majority of games that feature multi-jumps, probably

December 2016] OPTIMIZING MULTI-JUMPS 1021

(0, 0)

(d, h) (0, 0) (d, h)
(0, 0)

(d, h)

Figure 7. The line method selects successful multi-jumps.

because this scenario is the easiest to implement by a game programmer. In Section 5
we will address this problem for AI-controlled characters in the relaxed situation that
f1, . . . , fn are standard and not necessarily equal.

Suppose f1 is a fully concave jump function. Write f = f1, c = c1, and consider
the sequence of jump functions (f, . . . , f︸ ︷︷ ︸

n

). Here is our strategy, which we call the

line method. Consider the line connecting (0, 0) and (d, h). Whenever the character’s
trajectory intersects this line, jump. See Figure 7.

Theorem 6. If the platform beginning at (d, h) is reachable, then the line method will
select a multi-jump that causes the character to land on the platform.

Proof. By Theorem 3 the unique sequence of jump points (z1, . . . , zn) defining the
multi-jump ending at (d, hmax(d)) has z1 = · · · = zn . Let z = z1, so nz = d. Since
d ≥ C = nc we have z ≥ c. Since f is concave down it lies above any of its secant
lines, so the following “strategy” selects the jump points (z, . . . , z): Consider the line
L̂ connecting (0, 0) and (d, hmax(d)). Whenever the character’s trajectory intersects
L̂ , jump. (This is not a strategy a player could follow because hmax(d) is not known
to the player.)

Since the platform beginning at (d, h) is reachable we have h ≤ hmax(d). The
slope of L̂ is hmax(d)

d , while the slope of the line L for the line method is h
d . Since

h ≤ hmax(d) and d > 0 we have h
d ≤ hmax(d)

d . In particular since L̂ intersects the down-
ward (and not the upward) trajectory of the character’s first jump, L also intersects
the downward (and not the upward) trajectory of the character’s first jump. Induction
establishes that the line method selects jump points (a, . . . , a) with a ≥ z.

Let F = F(a, . . . , a︸ ︷︷ ︸
n

) and consider the graph y = F(x) of the multi-jump selected

by the line method. Using again the fact that the graph of f lies above any of its
secant lines and that na ≥ nz = d we have that the graph y = F(x) from x = 0 to
x = d is always above (or touching) L . Therefore, d horizontal units into this trajec-
tory the character will be at the point (d, F(d)), with F(d) ≤ hmax(d) (by definition
of hmax(d)) and F(d) ≥ h (since L intersects (d, h)). That is, d horizontal units into
the trajectory selected by the line method the character will either be above or touch-
ing the platform. Therefore, since the platform extends indefinitely to the right and
limx→∞ f (x) = −∞, continuing to follow this trajectory to the right will eventually
cause the character to land on the platform.

Remark. We require the assumption that f is concave down throughout its domain to
ensure that the trajectory selected by the line method will not collide with the underside
of the platform. For example, if

1022 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 123

f (x) =
{

x3 if x ≤ 1,

−(x − 1)2 + 1 if x > 1,

then for the sequence of jump functions (f, f) we have C = 2, and the platform
beginning at (2, 1) is easily reachable by a double jump (by jumping at the peak, for
instance). However one may check that jumping according to the line method—that is,
jumping in midair when the line connecting (0, 0) and (2, 1) intersects the downward
trajectory of the first jump—would cause the character to collide with the underside of
the platform.

Remark. Suppose the platform beginning at (d, h) is reachable. When the jump func-
tions f1, . . . , fn available are not fully concave or not all equal, we have been unable
to give a strategy that a human player could follow that guarantees that the player will
reach the platform. However in this situation the fundamental theorem still provides a
useful heuristic—try to imagine a multi-jump that ends at or above (d, h), and jump
whenever the slope of the tangent to your current jump matches the slope of the tangent
of the ending point of the imagined multi-jump.

5. AI STRATEGY. Let (f1, . . . , fn) be a sequence of standard jump functions,
where fi peaks at ci . Let C = c1 + · · · + cn . Fix d ≥ C and h ∈ R. Consider the prob-
lem of deciding whether the platform beginning at (d, h) is reachable by a multi-jump,
and if it is, deciding what multi-jump to use to reach the platform.

We now give a numerical solution to this problem which is efficient enough to be
used in real time by an AI-controlled character. Following Remark 4, our strategy is
to analyze the function g(x1) = x1 +∑n

i=2 f ′−1
i (f ′

1(x1)) to find the sequence of jump
points (x1, . . . , xn) defining the multi-jump that ends at (d, hmax(d)). Then the plat-
form beginning at (d, h) is reachable if and only if h ≤ hmax(d), and if the platform
is reachable, then continuing to follow the multi-jump ending at (d, hmax(d)) to the
right will eventually land the character on the platform (since the platform extends
indefinitely to the right and limx→∞ fn(x) = −∞).

Algorithm 1 implements this approach. It accepts ε > 0, f1, . . . , fn , c1, . . . , cn ,
and d ≥ c1 + · · · + cn , and computes (x1, . . . , xn) such that, with error less than ε, the
multi-jump defined by (x1, . . . , xn) ends at (d, hmax(d)). Specifically, the output of
Algorithm 1 is guaranteed to satisfy |d −∑n

i=1 xi | < ε and | f ′
i (xi) − f ′

1(x1)| < ε for
all i .

We assume we have access to a function root(f (x), a, b, e), which accepts a con-
tinuous function f (x) on [a, b] and returns z ∈ [a, b] such that f (r) = 0 for some
r ∈ [a, b] with r ∈ [z − e, z + e], and throws an exception if no such z ∈ [a, b] exists.
Such a function is available in any number of scientific computational packages—see,
e.g., scipy [5]. We also assume that the fi and f ′

i can be evaluated exactly.

Algorithm 1. Algorithm for computing the jump points (x1, . . . , xn) defining the
multi-jump ending at (d, hmax(d)).

1 # I n p u t : (f1, . . . , fn), (c1, . . . , cn), d, ε

2 # Outpu t : (x1, . . . , xn)

3
4 d e f NumericalInverse(f, y, a, b, e) :
5 g(x) = f (x) − y
6 w h i l e True :
7 t r y :
8 r e t u r n root(g(x), a, b, e)

December 2016] OPTIMIZING MULTI-JUMPS 1023

9 e x c e p t R u n t i m e E r r o r (no r o o t) : # i f t h e r e i s no r o o t on [a, b]
10 b = b × 10 # t h e n expand t h e s e a r c h r a n g e t o t h e r i g h t
11
12 d e f OptimalJumpPoints((f1, . . . , fn), (c1, . . . , cn), d, ε) :
13 e = ε

14 d e f DerivativeCheck((x1, . . . , xn)) :
15 f o r i = 2, . . . , n :
16 i f | f ′

i (xi) − f ′
1(x1)| ≥ ε :

17 r e t u r n F a l s e
18 r e t u r n True
19 F(x) = x − d +∑n

i=2 NumericalInverse(f ′
i , f ′

1(x), ci , d, e/n)

20 w h i l e True :
21 x1 = root(F(x), c1, d, e/n)

22 f o r i = 2, . . . , n :
23 xi = NumericalInverse(f ′

i , f ′
1(x1), ci , d, e/n)

24 i f |d −∑n
i=1 xi | < ε and DerivativeCheck((x1, . . . , xn)) :

25 r e t u r n True
26 e l s e :
27 e = e × 0.1
28
29 r e t u r n OptimalJumpPoints((f1, . . . , fn), (c1, . . . , cn), d, ε)

In Algorithm 1 we assume that the f ′−1
i must be evaluated numerically. If they can

be evaluated exactly, a handful of simple changes makes the algorithm significantly
more efficient:

Algorithm 2. Modification of Algorithm 1 when the f ′−1
i can be computed exactly.

• The functions NumericalInverse and DerivativeCheck are no longer neces-
sary.

• NumericalInverse(f ′
i , f ′

1(x), ci , d, e/n) is replaced with f ′−1
i (f ′

1(x)) on line 19.
• NumericalInverse(f ′

i , f ′
1(x1), ci , d, e/n) is replaced with f ′−1

i (f ′
1(x1)) on line

23.
• The phrase “and DerivativeCheck((x1, . . . , xn))” is removed from line 24.

We have implemented Algorithms 1 and 2 in Sage, a free and open-source computer
algebra system [8], and have found our implementations to be quite fast in practice
across a wide range of standard jump functions.

For purposes of comparison we tested Algorithms 1 and 2 with functions of the
form given by (1). Each of our two tests consisted of 2500 samples, where a sample
consisted of a sequence of jump functions (f1, f2, , . . . , fn) (with each fi of the form

fi(x) = −ai(x − ci)
ri + ki), d a random real number in

[∑n
i=1 ci , 1.5

∑n
i=1 ci

]
, and

a set value of ε. We ran each sample 50 times in each of our algorithms and took the
time for the 40th-slowest run. That is, 80% of calls to our algorithms ran at least as
quickly as the numbers reported here. We chose to report at the 80th percentile level
(as opposed to the slowest-seen level) to give reasonable running time estimates—
the slowest calls are sometimes slowed by system-specific scheduling issues that have
nothing to do with the intrinsic speed of our algorithms. We ran our tests in a single
thread on an Intel R© CoreTM i5-6600 processor at stock speed.

To establish a baseline for comparison, our first test was n = 3, with ai ∈ [0.5, 10], ci

∈ [1, 10], ki ∈ {1, . . . , 10} (each selected uniformly at random), ri = 2, and ε = 10−9.

1024 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 123

0 100 200
0

200

400

Algorithm 1 time (ms)

O
bs

er
ve

d
fr

eq
ue

nc
y

(o
ut

of
25

00
)

0 10 20 30
0

200

400

600

800

Algorithm 2 time (ms)

O
bs

er
ve

d
fr

eq
ue

nc
y

(o
ut

of
25

00
)

Figure 8. Algorithm test 2

In this test both algorithms were extremely fast, with Algorithm 1 always completing
in less than 10.1 milliseconds and Algorithm 2 in less than 1.7 milliseconds.

0 2,000 4,000

0

100

200

300

Number of function evaluations

A
lg

or
ith

m
1

ru
nn

in
g

tim
e

(m
s)

0 20 40 60 80
0

10

20

30

Number of function evaluations

A
lg

or
ith

m
2

ru
nn

in
g

tim
e

(m
s)

Figure 9. Algorithm test 2

1 1.25 1.5
d/C

1 1.25 1.5
d/C

1 1.25 1.5
d/C

= 10−1 = 10−4 = 10−9

0

100

200

300

Ti
m

e
(m

s)

0

100

200

300

Ti
m

e
(m

s)

0

100

200

300

Ti
m

e
(m

s)

Figure 10. Algorithm 1 speeds for the Main Outlier: n = 4 with f1(x) = −9.76(x − 5.81)2 + 7, f2(x)

= −8.17(x − 7.83)5 + 5, f3(x) = −8.44(x − 7.59)5 + 1, f4(x) = −6.16(x − 7.64)4 + 3

In our second test we went beyond parabolas, taking n = 4 and selecting
ri ∈ {2, 3, 4, 5} uniformly at random. We continued to take ai ∈ [0.5, 10], ci ∈
[1, 10], ki ∈ [1, 10] (each selected uniformly at random), and ε = 10−9. In this test
Algorithm 1 always completed within 242 milliseconds, while Algorithm 2 always

December 2016] OPTIMIZING MULTI-JUMPS 1025

1 2 3
d/C

1 2 3
d/C

1 2 3
d/C

0

100

200

300

Ti
m

e
(m

s)

0

100

200

300

Ti
m

e
(m

s)
0

100

200

300

Ti
m

e
(m

s)

= 10−1 = 10−4 = 10−9

Figure 11. Algorithm 1 speeds for n = 4 for a typical sample: f1(x) = −5.05(x − 8.66)4 + 8, f2(x)

= −5.02(x − 3.30)3 + 4, f3(x) = −5.95(x − 3.75)2 + 8, f4(x) = −5.35(x − 2.75)4 + 6

completed within 29 milliseconds. Median completion times were 27 milliseconds
and 4 milliseconds, respectively. See Figure 8.

The primary factor affecting the running times of our algorithms is the number of
function evaluations made during root finding. Scatter plots of the number of function
evaluations versus overall algorithm speed in our second test are given in Figure 9,
together with their lines of best fit. For each algorithm we see three outliers (which
are in fact the same three samples), the worst of which required over 4000 function
evaluations in Algorithm 1. That sample was, to two decimal places (which is enough
to replicate this behavior),

f1(x) = −9.76(x − 5.81)2 + 7, f2(x) = −8.17(x − 7.83)5 + 5,

f3(x) = −8.44(x − 7.59)5 + 1, f4(x) = −6.16(x − 7.64)4 + 3.

We will call this the Main Outlier. For each of our outliers we found that d was only
very slightly larger than C , and that either increasing d slightly or decreasing ε was
enough to make our algorithms run with times comparable to the other samples in
our tests. In Figure 10 we show the running time of Algorithm 1 for the Main Outlier
across a range of d and ε values. The type of information in Figure 10 is the most perti-
nent type of information for a game’s AI developer, who works with a fixed collection
of jump functions. This information can vary considerably depending on the specific
collection of jump functions. For instance, in Figure 11 we display the running times
of a typical sample in our tests across a range of d and ε values. If that sample were
the collection of jump functions in our video game, we could be confident that Algo-
rithm 1 would complete quickly given any reasonable combination of d and ε input
values.

6. LEVEL DESIGN. In this section we consider multi-jumps beginning at points
other than the origin. Let (f1, . . . , fn) be a sequence of jump functions and (x1, . . . , xn)

a sequence of nonnegative real numbers. The multi-jump beginning at (a, b) defined
by (x1, . . . , xn), denoted F (a,b)

(x1,...,xn), is the translation of F(x1,...,xn) horizontally by |a|
units (left if a < 0 and right if a > 0) and vertically by |b| units (up if b > 0 and down
if b < 0). The graph of F (a,b)

(x1,...,xn) captures the trajectory a character would follow by
starting at (a, b) and jumping to the right n times, following the arcs of f1 through
fn in sequence, where the arc of the first jump is followed for x1 horizontal units, the
arc of the second is followed for x2 horizontal units, and so on, and the arc of fn is
followed for xn units. The multi-jump F (a,b)

(x1,...,xn) covers a total horizontal distance of
x1 + · · · + xn units and ends at a height of b + f (x1) + · · · + fn(xn).

1026 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 123

Suppose now that f1, . . . , fn are standard, xi ≥ ci for all i , and f ′
1(x1) = f ′

2(x2) =
· · · = f ′

n(xn). Let d = ∑n
i=1 xi and h = hmax(d). By Theorem 3, of all multi-jumps

beginning at (0, 0), the multi-jump defined by (x1, . . . , xn) is the unique multi-jump
ending at (d, h). In this section we address the question: How can we design the ground
G so that for any point (x, G(x)) on the ground, the unique optimal multi-jump starting
at (x, G(x)) and ending at x = d also has the property that it ends at y = h? Answer-
ing this question allows a game designer to place a platform which is guaranteed to be
reachable from any point on the ground (by having the platform begin at or just below
(d, h)), or more interestingly, to place a platform which is guaranteed to be just barely
unreachable from every point on the ground (by having the platform begin just above
(d, h)).

Let C = c1 + · · · + cn . Suppose that x ∈ R with d − x ≥ C , and that the unique
optimal multi-jump beginning at (x, y) and ending at (d, h) is defined by jump points
(x1, . . . , xn). We have f ′

1(x1) = f ′
2(x2) = · · · = f ′

n(xn),

x1 +
n∑

i=2

f ′−1
i (f ′

1(x1)) = d − x, (2)

and

f1(x1) +
n∑

i=2

fi (f ′−1
i (f ′

1(x1))) = h − y. (3)

By (2) x1 is determined by x , so by (3) y is determined by x . That is, there is only
one possible design for the ground having the required property. Write y = G(x). One
can deduce G(x) by solving (2) for x1 and then using (3) to find y = G(x). For most
collections of jump functions this will require a numerical solution, but when the fi are
all of the form given by (1) and have the same degree, for instance, an exact solution
can be given.

Theorem 7. Suppose fi (x) = −ai(x − ci)
r + ki for x ≥ ci for all i , with ai , ci , ki > 0

and r > 1. Then

G(x) =
[

n∑
i=1

ai
1/(1−r)

]1−r

(d − C − x)r +
[

h −
n∑

i=1

ki

]

defines the unique ground shape {(x, G(x)) : d − x ≥ C} for which the optimal multi-
jump beginning at (x, G(x)) and ending at x = d also ends at y = h.

Before we prove Theorem 7 we give several remarks.

Remark. In Theorem 7 the shape of the ground is a polynomial of the same degree
as each of the fi . In the case that r = 2, the shape of the ground is a parabola and the
formula

G(x) =
[

1∑n
i=1

1
ai

]
(d − C − x)2 +

[
h −

n∑
i=1

ki

]

is given in vertex form.

December 2016] OPTIMIZING MULTI-JUMPS 1027

0 2 8.5

−1
0

9.75

x ≤ 2
The ground G (x) = 0.25 (x − 2)2 − 1,

Figure 12. The optimal multi-jump beginning at (0, 0) and ending at (8.5, hmax(8.5) = 9.75), drawn together
with the ground G and the platform beginning at (8.5, 9.75); jump functions from the Main Example

Main Example, Part 3. Using the functions in the Main Example with d = 8.5 and
h = hmax(8.5) = 9.75, we obtain

G(x) =
[

1
1

1/2 + 1
1 + 1

1

]
(8.5 − (3 + 2 + 1.5) − x)2 + [9.75 − (4.5 + 4 + 2.25)]

= 1

4
(2 − x)2 − 1,

with x ≤ 2. In Figure 6 we graph G together with F(4,2.5,2), the unique optimal multi-
jump beginning at (0, 0) and ending at (8.5, 9.75). In Figure 6 we add to this the graphs
of several other optimal multi-jumps beginning along the ground G, all of which end
at x = 8.5 and hence at (8.5, 9.75).

Remark. The reader may have noticed that in Figure 6, the slope of the tangent line
to the ground at the starting point of any multi-jump appears to be equal to the slope of
the tangent line at every jump point on that multi-jump. Indeed they are equal, and this
is no coincidence—in general, as long as the ground G is continuously differentiable
with G ′(x) ≤ 0 for x ≤ d − C , one may regard a character walking along G as follow-
ing the decreasing portion of the first jump of a multi-jump and apply the fundamental
theorem to conclude that if F (x,G(x))

(x1,...,xn) is an optimal multi-jump that begins at (x, G(x))

and ends at (d, h), then G ′(x) = f ′
1(x1) = · · · = f ′

n(xn).

Remark. By definition, any ground that lies strictly below G is a ground shape from
which the platform beginning at (d, h) is unreachable using any multi-jump. See
Figure 14.

Proof of Theorem 7. Let G be the shape of the ground having the desired property.
Since f ′

i (x) = −rai (x − ci)
r−1 we have

f ′−1
i (x) =

(−x

rai

)1/(r−1)

+ ci ,

1028 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 123

0 2 8.5

−1
0

9.75

The ground G (x) = 0.25 (x − 2)2 − 1,
x ≤ 2

Figure 13. All optimal multi-jumps beginning along G and ending at x = 8.5 end at (8.5, hmax(8.5)); jump
functions from the Main Example

0 2 8.5

−1
0

9.75

G given d = 8.5 and
hmax(8.5) = 9.75

H

Figure 14. A ground design H from which no multi-jump can reach the platform beginning at (8.5, 9.75)

and hence

f ′−1
i (f ′

1(x1)) =
(

a1

ai

)1/(r−1)

(x1 − c1) + ci . (4)

By (2), then, we have

x1 +
n∑

i=2

((
a1

ai

)1/(r−1)

(x1 − c1) + ci

)
= d − x .

December 2016] OPTIMIZING MULTI-JUMPS 1029

Solving for x1 we obtain

x1 =
d − x + c1

∑n
i=2

(
a1
ai

)1/(r−1)

−∑n
i=2 ci

1 +∑n
i=2

(
a1
ai

)1/(r−1)

=
d − x + c1

∑n
i=1

(
a1
ai

)1/(r−1)

−∑n
i=1 ci∑n

i=1

(
a1
ai

)1/(r−1)

=
d − C − x + c1

∑n
i=1

(
a1
ai

)1/(r−1)

∑n
i=1

(
a1
ai

)1/(r−1)

= d − C − x∑n
i=1

(
a1
ai

)1/(r−1)
+ c1.

That is,

x1 − c1 = d − C − x∑n
i=1

(
a1
ai

)1/(r−1)
. (5)

It follows from (4) that fi(f ′−1
i (f ′

1(x1))) = −ar/(r−1)
1

ai
1/(r−1) (x1 − c1)

r + ki , so by (5) we have

fi(f ′−1
i (f ′

1(x1))) = −ar/(r−1)

1

ai
1/(r−1)

(∑n
j=1

(
a1
a j

)1/(r−1)
)r (d − C − x)r + ki

= −1

ai
1/(r−1)

(∑n
j=1

(
1

a j

)1/(r−1)
)r (d − C − x)r + ki

= −ai
1/(1−r)(∑n

j=1 a j
1/(1−r)

)r (d − C − x)r + ki .

Putting this together with (3), we have

G(x) = y = h −
n∑

i=1

fi (f ′−1
i (f ′

1(x1)))

= h −
n∑

i=1

⎛
⎜⎝ −ai

1/(1−r)(∑n
j=1 a j

1/(1−r)

)r (d − C − x)r + ki

⎞
⎟⎠

=

⎡
⎢⎣ n∑

i=1

ai
1/(1−r)(∑n

j=1 a j
1/(1−r)

)r

⎤
⎥⎦ (d − C − x)r +

[
h −

n∑
i=1

ki

]

1030 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 123

=

⎡
⎢⎣ ∑n

i=1 ai
1/(1−r)(∑n

j=1 a j
1/(1−r)

)r

⎤
⎥⎦ (d − C − x)r +

[
h −

n∑
i=1

ki

]

=
[

n∑
i=1

ai
1/(1−r)

]1−r

(d − C − x)r +
[

h −
n∑

i=1

ki

]

as claimed.

7. SUMMARY AND CONCLUSIONS. We have introduced jump functions, stan-
dard jump functions, and fully concave jump functions, and have studied how to com-
bine them optimally into multi-jumps. We have also given strategies for reaching a
distant platform with a multi-jump that can be followed by any player or AI (if the
multi-jump is formed from a sequence of equal fully concave jump functions), or by
an AI after some quick numerical computation (if the multi-jump is formed from a
sequence of standard jump functions). We have also shown how a game designer can
build the ground around a platform so that the platform is reachable (or unreachable)
from any point on the ground by a multi-jump.

With the exception of the fundamental theorem, our results only apply to multi-
jumps formed by standard jump functions. When the jumps available to a character are
nonstandard it is possible for there to be several multi-jumps ending at (d, hmax(d)),
and the condition f ′

1(x1) = · · · = f ′
n(xn) is only a necessary condition for the sequence

of jump points (x1, . . . , xn) to define an optimal multi-jump. This situation should be
explored further. It would be interesting to give an AI strategy for selecting multi-
jumps ending at (d, hmax(d)) when the jump functions are nonstandard. It would also
be interesting to give a faster AI strategy than Algorithm 1 for standard jump functions
when their derivative inverses cannot be evaluated exactly. We are currently working
on an AI strategy that will apply when the jump functions are nonstandard, which we
hope will also be faster than Algorithm 1.

ACKNOWLEDGMENT. The authors are grateful to the College of Sciences at Sam Houston State University
for the undergraduate research award that partially supported this work and to the anonymous referees for their
helpful comments.

REFERENCES

1. G. Aloupis, E. D. Demaine, A. Guo, G. Viglietta, Classic Nintendo games are (computationally) hard,
Theoret. Comput. Sci. 586 (2015) 135–160, http://dx.doi.org/10.1016/j.tcs.2015.02.037.

2. AlphaGo: Google DeepMind, http://deepmind.com/alpha-go.html. Accessed March 23, 2016.
3. P. E. Hart, N. J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum

cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (1968) 100–107, http://dx.doi.org/10.1109/TSSC.
1968.300136.

4. IBM 100—Deep Blue, http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/.
Accessed March 23, 2016.

5. E. Jones, T. Oliphant, P. Peterson et al., SciPy: Open source scientific tools for Python (2001–),
http://www.scipy.org/. Accessed Dec. 3, 2015.

6. D. Silver et al., Mastering the game of Go with deep neural networks and tree search, Nature 529 (2016)
484–489, http://dx.doi.org/10.1038/nature16961.

7. M. Spivak, Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus.
Westview Press, Boulder, CO, 1965 and 1998.

8. W. A. Stein et al., Sage Mathematics Software (Version 5.6.0), The Sage Development Team (2013),
http://www.sagemath.org. Accessed Dec. 3, 2015.

December 2016] OPTIMIZING MULTI-JUMPS 1031

http://dx.doi.org/10.1016/j.tcs.2015.02.037
http://deepmind.com/alpha-go.html
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/TSSC.1968.300136
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
http://www.scipy.org/
http://dx.doi.org/10.1038/nature16961
http://www.sagemath.org

9. What is Metroidvania? (2015) http://www.youtube.com/watch?v=LfEOEqnYiM4. Accessed March
23, 2016.

AARON M. BROUSSARD received his B.S. in mathematics from Sam Houston State University in 2013.
He then became a Simulation Software Engineer at Lockheed Martin Aeronautics and Space Systems. His free
time usually involves working on puzzles with his wife, reading xkcd, math, programming, and video games.
abroussard11@gmail.com

MARTIN E. MALANDRO received his B.S. in mathematics from Texas Tech University in 2003 and his
Ph.D. in mathematics from Dartmouth College in 2008. He then joined the faculty at Sam Houston State
University, where he is now Associate Professor of Mathematics. In his spare time he enjoys programming,
music, and the occasional video game.
Department of Mathematics and Statistics, Box 2206, Sam Houston State University, Huntsville, TX 77341-
2206
malandro@shsu.edu

ABAGAYLE SERREYN is an undergraduate chemistry major and math minor at College of the Ozarks. She
plans to graduate in May of 2018 and become certified to teach high school. When she is not busy doing lab
work she relaxes by reading speculative fiction, solving math and logic puzzles, and singing along with her
favorite songs.
abagayleserreyn@gmail.com

100 Years Ago This Month in The American Mathematical Monthly
Edited by Vadim Ponomarenko

Recent papers read before the ASSOCIATION and the SOCIETY indicate that renewed
interest is apparent in all phases of mathematical history. Hence, no apology is
needed for the publication of notes such as the following:

In Nature, December 3, 1914, p. 363, Professor CAJORI showed that the cross
× as a symbol of multiplication, which is said in histories to occur first in William
Oughtred’s Clavis mathematicae (1631), is given in form of the letter x and X
in Edward Wright’s translation of John Napier’s Mirifici logarithmorum canonis
descriptio, second edition, London, 1618, where we read, page 4: “The note of addi-
tion is (+), of subtracting (−), of multiplying (×).” This is taken from a part of the
book headed “Appendix to the Logarithmes,” the authorship of which is not given
but is believed now most probably to be attributed to William Oughtred.

In 1902 Professor W. W. BEMAN pointed out (L’Intermédiaire des mathémati-
ciens, T. 9, Paris, p. 229, question 2424) that the colon (:) occurs as the symbol
for geometric ratio at the end of the tables in Oughtred’s Trigonometria of 1657.
Professor CAJORI has found that the colon was so used by the astronomer Vincent
Wing in 1651, 1655, and 1656 and by a Suffolk schoolmaster with the initials
“R. B.” in 1655.

The first designation of the sides of a triangle by the same letters, respectively, as
the angles opposite, one group of letters being capitals A, B, C , and the other group
small letters a, b, c, has been attributed to Leonhard Euler (Histoire de l’académie
de Berlin, année, 1753, p. 231), but Professor CAJORI finds that it occurs in a pam-
phlet containing trigonometric formulas published by Richard Rawlinson of Queen’s
College, Oxford, sometime between 1655 and 1668.

—Excerpted from “Notes and News” 23 (1916) 399–404.

1032 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 123

http://www.youtube.com/watch?v=LfEOEqnYiM4
mailto:abroussard11@gmail.com
mailto:malandro@shsu.edu
mailto:abagayleserreyn@gmail.com

	Introduction.
	Jump functions and multi-jumps.
	The fundamental theorem.
	Player strategy.
	AI strategy.
	Level design.
	Summary and conclusions.
	100 Years Ago This Month in The American Mathematical Monthly Edited by Vadim Ponomarenko

