T. G. Chasteen
Department of Chemistry Sam Houston State University Huntsville, Texas 77340 USA |
Quick Links to Chemiluminescence Movies: |
Introduction
Most chemiluminescence methods involve only a few chemical components to actually generate light. Luminol chemiluminescence (Nieman, 1989), which has been extensively investigated, and peroxyoxalate chemiluminescence (Given and Schowen, 1989; Orosz et al., 1996) are both used in bioanalytical methods and will be the subject of this primer on chemiluminescence. In each system, a "fuel" is chemically oxidized to produced an excited state product. In many luminol methods it is this excited product that emits the light for the signal. In peroxyoxalate chemiluminescence, the initial excited state product does not emit light at all and instead it reacts with another compound, often a compound also viable as a fluorescent dye, and it is this fluorophore which becomes excited and emits light. That said, the oxalate reactions, to have practical applicability in, for instance HPLC, require a mixed solvent system (buffer/organic solvent) to assure solubility of the reagents, optimized pH, and allow compatibility with the analytes.
A general discussion of these two methods, their applicability as
reported in some of the recent literature, and a discussion of the
emission spectra of each--complete with movies that show short
experiments with each--will be presented.
Peroxyoxalate
Chemiluminescence
Primer
The intermediate, shown here as 1,2-dioxetanedione, excites a fluorophore. In the included movie demonstrating TCPO chemiluminescence, 9,10-diphenylanthracene acts as the fluorophore; its lambda max is 425 nm in the solvent used, tetrahydrofuran. Its reaction with the intermediate produces the excited state product which quickly emits light.
The process of transferring the energy of the initial reaction, the chemical reaction of hydrogen peroxide with TCPO, to light emission from the excited state fluorophore (fluorophore*) can be sidetracked along the way by loses in each step of the process: the initial oxidation to produce the intermediate, the reaction of the intermediate with a fluorophore, and the reaction of the excited fluorophore to produce light (Orosz et al., 1996).
The initial oxidation can yield the high energy intermediate or
This, therefore, sets the stage for analytical methods whereby manipulating the appropriate parameter allows for the sensitive determination of hydrogen peroxide (Pontén et al., 1996; Stigbrand et al., 1994) or fluorophore content.
Recently, for example, Hamachi et al. (1999) determined the
concentration of propentofylline in hypocampus extracts from rats
by derivitizing the analyte to create a fluorophore which would
chemiluminesce with another peroxyoxalate, TDPO
[bis(2-(3,6,9-trioadecanyloxycarbonyl)-4-nitrophenyl)oxalate, and
hydrogen peroxide following HPLC. Propentofylline is a reported
inhibitor of dopamine released during low oxygenation events in
the cerebellum. The derivatization of propentofylline was carried
out in trifluoracetic acid/acetonitrile solution using DBD-H (a
benzoaxadiazole). The detection limit for the analyte, 31
fg/injection, was about 200 times better than comparable HPLC-UV
methods.
Emission
Spectrum
of Diphenylanthracene as Chemiluminescent Fluorophore
A
solution of TCPO and 9,10-diphenylanthracene (DPA; Aldrich
Chemicals Co., Milwaukee, WI USA) both in the 1 x 10-3
M concentration range dissolved in tetrahydrofuran (THF) were
mixed with a dilute solution of H2O2 in THF
(~0.3%) at ~25oC. The resulting emission spectrum was
recorded on a fluorescence spectrometer (Hitachi F-4500; 1 cm
quartz cell) in chemiluminescence mode (with no excitation
source). The slit and PMT voltage were adjusted to allow for the
detection of a strong signal without overloading the detector. The
components were mixed and the emission spectrum scanned
immediately (1200 nm/min). As the Figure below shows, the emission
was centered around 425 nm. This is, of course, similar to DPA's
"normal" fluorescent emission.
Movie
of TCPO + H2O2 + Diphenylanthracene
Chemiluminescence Reaction
The movie included here involves that same solution, TCPO and
9,10-diphenylanthracene dissolved in THF. If you look closely you
may be able to see the milky consistency of the slightly yellow,
initial mixture--shown under fluorescent lights, before hydrogen
peroxide was added. Without a mixed solvent system, the solubility
of each of these components is relatively low and so the solution
is basically saturated with each of these reagents (but still in
the low millimolar concentration range).
In the dark, a solution of ~0.3% H2O2 in
THF was added dropwise to approximately 8 mL of the fuel +
fluorophore in THF (~25oC) in an open-topped vial. The
reaction(s) immediately produces light from the excited
fluorophore. The emission is relatively short lived but since H2O2
is apparently limiting, a second and third dropwise addition of
the oxidant yields additional bursts of light. If you will look
carefully at the end of the movie you will see a clear--yet still
yellow--solution in which all precipitates have dissolved. Also
apparent to the experimenter, but undetectable in the movie, was
the formation of a gas produced by the reaction; this appeared as
a bubbling that could be seen while the reaction was still
producing light yet which stopped as the reaction reached
completion, about 30 seconds after the last (excess) H2O2
addition. This kind of gas production has been used as evidence
for the production of CO2 as a product from the
1,2-dioxetandione intermediate as detailed in the figure above.
Further peroxide addition does not yield more bubbling so this is
not simply H2O2 decomposition. The process
of filming this reaction is described below.
Luminol
Chemiluminescence
The presence of a catalyst is paramount to this chemiluminescent method as an analytical tool. Many metal cations catalyze the reaction of luminol, H2O2, and OH- in aqueous solution to increase light emission or at least to increase the speed of the oxidation to produce the emitter and therefore the onset/intensity of light production. [Some metals, however, repress chemiluminescence at different concentrations (Yuan and Shiller, 1999; see below.] This therefore can be the foundation of significantly different analytical determinations. For instance, this system can be used:
Most recently, Yuan and Shiller (1999) report a subnanomolar
detection limit for H2O2 using luminol
chemiluminescence. Their method, which was used to determine
hydrogen peroxide content in sea water, was based on the
cobalt(II) catalytic oxidation of luminol. While Co is the most
sensitive luminol metal catalyst, it is also present in sea water
at very low concentrations. The pH of the luminol solution used in
this work was 10.15, and interferences from seven different metals
were investigated. Interestingly some metals interfered positively
and some negatively, and Fe(III) interfered positively at one
concentration and negatively at another. Finally, very low
concentrations of iron(II) showed a significant positive
interference in determination of H2O2, but
the authors used the relatively short half life of Fe(II) in
marine water as a means of eliminating Fe(II) interference in the
determination of hydrogen peroxide in their analysis by storing
samples for over 1 hr before analysis.
Light
emission from 3-APA
Approximately 15 ml of a solution containing luminol, copper
catalyst, and pH controllers were placed in a glass vial at ~25oC
(1 x 10-3 M luminol; 0.05 M sodium carbonate; 0.3 M
sodium bicarbonate; 5 x 10-3 M ammonium carbonate; 1.5
x 10-3 M Cu(II) added as sulfate salt). An aqueous
solution of approximately 0.25% H2O2 was
added dropwise.
The emission spectrum was taken as before using a fluorescence spectrometer with the excitation source off. The light intensity-time decay data were taken immediately after mixing the reagents and for 60 seconds. The lambda max is at approximately 445 nm, slightly longer wavelength than the TCPO/DPA system described above. Online presentations of the light intensity-time decay aspects of the luminol reaction with hydrogen peroxide and differing concentrations of Cu(II) as catalyst are also available elsewhere (Iwata and Locker, 1998); however, with this reagent mixture the onset of emission was almost instantaneous and reached a maximum within a few seconds.
As the figure shows the light intensity decayed to approximately
50% of maximum at about 8 seconds. Iwata and Locker found that
both the initial intensity and rate of decay in this kind of
system was dependent on Cu(II) content. In the TCPO system
described above, Orosz et al. (1996) reported that decay rate,
rise constant, maximal light intensity, and quantum efficiency
depended on hydrogen peroxide concentration. These authors present
a comprehensive review of efforts to model the optimization of
reagent flow rates and concentrations on HPLC detector responses
with the TCPO reaction(s).
Movie
of Luminol Chemiluminescence
The luminol reaction described above was carried out by placing
approximately 15 mL of a solution containing the fuel (luminol),
Cu2+ (1.5 x 10-3 M as the sulfate), and
buffers detailed above in a open-topped glass vial (~25oC).
The initial solution is visible at the movie's beginning as light
blue in color under the laboratory's fluorescent light due to
aqueous copper cations. In the dark, aqueous hydrogen peroxide
(~0.3%) was added dropwise four times (small 1 or 2 mL squirts is
probably a better description). The light emission is also, as
before with TCPO, almost simultaneous upon mixing. The light
produced appears white/blue and, as in the TCPO/DPA movie, since
fuel is initially in excess, multiple injections of the limiting H2O2
reagent are necessary to take the reaction nearer to completion.
Finally, after the fourth addition, the mixture was allowed to
decay undisturbed and the light intensity drops off rather quickly
(see the time decay data above). Approximately 80 seconds after
the initial mixing began, the overhead fluorescent light were
turned on and the final frame shows that solution. The light blue
solution then appear green with a finely dispersed, black
precipitate.
Process
for
producing the movies
Bibliography
Chokshi, H. P.; Barbush, M.; Carlson, R. G.; Givens, R. S.; Kuwana, T.; Schowen, R. L. Biomed. Chrom. 1990, 4(3), 96-99.
Cunningham, C.; Tipton, K. F.; Dixon, H. B. F. Biochem. J. 1998, 330, 939-945.
de Jong, G. J.; Lammers, N.; Spruit, F. J.; Brinkman, U. A. T.; Frei, R. W. Chromatographia 1984, 18(3), 129-133.
de Jong, G. J.; Lammers, N.; Spruit, F. J.; Frei, R. W.; Brinkman, U. A. T. J. Chrom. 1986, 353, 249-257.
Edwards, R.; Townshend, A.; Stoddart, B. Analyst 1995, 120, 117-20.
Givens, R. S.; Schowen, R. L., The Peroxyoxalate Chemiluminescence Reaction, In Chemiluminescence and Photochemical Reaction Detection in Chromatography, J. W. Birks, Ed.; VCH: New York, 1989; pp 125-147.
Grayeski, M. L.; Weber, A. J. Anal. Lett. 1984, 17(A13), 1539-1552.
Iwata, N.; Locker, J. R. Final Report Summer Research: July 30, 1998; Department of Chemistry, Washington College, Chestertown, MD, USA.
Jennings, R. N.; Capomacchia, A. C. Anal. Chim. Acta 1988, 205, 207-213.
Kawasaki, T.; Meada, M.; Tsuji, A. J. Chromatogr. 1985, 328, 121-126.
Kobayashi, S.; Imai, K. Anal. Chem. 1980, 52, 1548-1549.
Koerner, P. J.; Nieman, T. A. Mikrochim. Acta 1987, II, 79-90.
Kwakman, P. J. M.; Brinkman, U. A. T. Anal. Chim. Acta 1992, 266, 175-192.
Kyaw, T.; Fujiwara, T.; Inoue, H.; Okamoto, Y.; Kumamaru, T. Anal. Sci. 1998, 14, 203-207.
Lippman R. D. Anal. Chim. Acta 1980, 116, 181-184.
Lu, X.; Lu, M. Fenxi Ceshi Tongbao, 1992, 11, 41-43.
Milofsky, R. E.; Birks, J. W. J. Am. Chem. Soc. 1991, 113(26), 9715-9723.
Nakazono, M.; Nohta, H.; Sasamoto, K.; Ohkura, K. Anal. Sci. 1992, 8 779-784.
Nieman, T. Detection Based on Solution-Phase Chemiluminescence Systems, In Chemiluminescence and Photochemical Reaction Detection in Chromatography, J. W. Birks, Ed.; VCH: New York, 1989; pp 99-123.
Orlovic, M.; Schowen, R. L.; Givens, R. S.; Alvarez, F.; Matuszewski, B.; Parekh, N. J. Org. Chem. 1989, 54, 3606-3610.
Orosz, G. Tetrahedron, 1989, 45(11), 3493-3506.
Orosz, G.; Givens, R. S.; Schowen, R. L.; Crit. Rev. Anal. Chem. 1996, 26(1), 1-27.
O'Sullivan, D. W.; Hanson, Jr. A. K.; Kester, D. R. Mar. Chem. 1995, 49, 65-77.
Pontén, E.; Appelblad, P.; Stigbrand, M.; Irgum, K.; Nakashima, K., Fresenius J. Anal. Chem. 1996, 356, 84-89.
Pontén, E.; Glad, B.; Stigbrand, M.; Sjögren, A.; Irgum, K. Anal. Chim. Acta 1996, 320, 87-97.
Robards, K.; Worsfold, P. Anal. Chim. Acta 1992, 266, 147-173.
Sano, A.; Nakamura, H. Anal. Sci. 1998, 14, 731-735.
Seitz, W. R. CRC Crit. Rev. Anal. Chem. 1981, 13, 1-58.
Stigbrand, M.; Pontén, E.; Irgum, K. Anal. Chem. 1994, 66, 1766-1770.
Sugiura, M.; Kanda, S.; Imai, K. Biomed. Chrom. 1993, 7(3), 149-154.
TheingiKyaw; Kumooka, S.; Okamoto, Y.; Fujiwara, T.; Kumamaru, T. Anal. Sci. 1999, 15, 293-297.
Tie, J.-K.; Chang, W.-B.; Ci, Y.-X. , Anal. Chim. Acta, 1995, 300(1-3), 215-220.
Tsukagoshi, K.; Sumiyama, M.; Nakajima, R.; Nakayama, M.; Maeda, M.; Anal. Sci. 14, 409-412.
Valeri, F.; Boess, F.; Wolf, A.; Goldlin, C.; Boelsterli, U. A. FreeRad. Biol. Med. 1997, 22, 257-268.
Yuan, J.; Shiller, A. M. Anal. Chem. 1999, 71, 1975-1980.