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Abstract 

Researchers in the paint and polymer industry have shown that the Hansen solubility 

parameters (HSP) are useful for predicting suitable solvents for the filled-polymer formulation 

process.  To apply this work to the high explosive formulation process, the HSPs of the various 

energetic materials must be determined or predicted. 

A quantitative structure activity relationship (QSAR) was developed that is based upon the 

output of a density functional theory optimization and frequency calculation (B3LYP/6-

31G(d)//B3LYP/6-31G(d)) using the Gaussian 03 computational package.  Structural parameters 

were extracted from the Gaussian output files of each molecular species.  These consisted of the 

geometric mean of the exact polarizability tensors (α , Å3), the dipole moment (μ, Debye) the 

highest occupied molecular orbital energy (HOMO, Hartree), the number of each type of atom, 

and the delta charge (Δq) – defined as the difference between the most negative heteroatom and 

the most positive hydrogen in the molecule.  The value of Δq = 0 was given to hydrocarbons by 

fiat.  A stepwise linear regression was used to determine the correlation of these inputs and 

mathematical transformations of these inputs to the HSPs for a training set of 54 solvents and 

nitrated compounds.  The resulting QSAR matrix was then applied to 23 energetic materials and 

precursors yielding the HSPs (δD, δP, δH) in MPa1/2. 

The HSPs were also determined for HMX, RDX, PETN, and HNS using experimental 

solubility data and the group additivity methods of Van Krevelen and Stefanis.  The QSAR 

model outperformed the group additivity methods in matching the experimentally determined 

HSPs using the Hansen distance parameter (Ra) as the figure of merit. 

En route to the QSAR model, a very simple model of molar volume was developed wherein 

the molar volume is computed directly from the molecular formula CaHbNcOdSePfFgClhBri via the 

following equation: Vm = 12.53 + 8.77a + 3.96b + 4.87c + 6.12d + 17.22e + 19.45f + 9.70g + 

18.66h + 20.74i. The correlation of this equation with the literature values of 183 molecules was 

99.67% with an R2 = 0.9847 over a range of 400 cm3/mol. 
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1 Introduction 

Solubility of explosives and polymer binders is a major factor in the formulation, 

recrystallization, and demilitarization processes.  Solvents, co-solvents, and non-solvents are used 

to form molding powders, to change particle size distributions, and to separate HE from binder. 

Since these activities are not new endeavors, there are well-established processes and process 

fluids.  However, the area of solubility is active for many reasons.  There is a constant push to 

reduce or eliminate the use of toxic solvents with more benign alternatives.  There is also a 

mandate to eliminate ozone-depleting solvents.  And lastly, there are efforts to remove solvents 

from the process stream that leave behind corrosion-promoting chlorides. [1] 

The paint and polymer industries have led the way in solvent substitution and solvent blend 

prediction activities.  In particular, the Hansen solubility parameters (HSPs) have proven 

themselves and are described in detail in the literature [2 – 6].  The HSPs may be used to 

qualitatively rank solvents and blends in terms of their interaction with a given solute.  Solutes 

and solvents that have similar HSPs are predicted to mix spontaneously.  Conversely, if the HSPs 

are drastically different between solute and solvent, then there will be little interaction and 

limited mixing.   

Several group additivity methods have been developed to build up the Hansen solubility 

parameters from the various constituent chemical groups present in a solute.  In an effort to 

produce a universal method, the developers of group additivity methods must include every 

possible chemical group that represents all bonding types.  In an effort to increase the accuracy of 

these methods, the developers have introduced secondary structure arrangements.  The drive 

towards universality has led to multiple ways to build a given solute, and non-obvious priority is 

given to certain bonding types and secondary structures.   

Computational chemistry programs are now available to almost all chemical researchers, and 

these programs have delivered the universal ability to model solutes that the group additivity 

methods have sought to achieve.  This presentation outlines a new approach wherein a 

quantitative structure activity relationship (QSAR) is developed that converts the structural 

parameters from a computational chemistry output file into the HSPs for the solute.   
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2 Experimental 

The experimental solubility data for HMX, HNS, PETN, and RDX was obtained from Pantex 

[8] and the US Army [9].  The data was analyzed using the Hansen solubility sphere optimization 

method [4] using Microsoft Excel as described in an earlier paper [10].  The operational 

definition of solvent was varied for each optimization in order to find the solubility sphere that 

included all of the solvents and contained the fewest non-solvents.  The cutoff values for the 

definition of solvent versus non-solvent for each HE are given in Table 1. 

The group additivity methods of Van Krevelen [5] and Stefanis [6] were used to estimate the 

Hansen solubility parameters of HMX, HNS, PETN, and RDX.  Hoy’s method [2] was not used 

because of the need for critical temperatures and boiling points – both of which are unavailable 

for explosives. 

2.1 QSAR Method Training 

The Gaussian 03 (G03) computational chemistry package [7] was used to optimize the 

geometry and compute the vibrational frequencies of 54 solvents and nitrated compounds from 

[4] with the B3LYP/6-31G(d) density functional model chemistry.  Although more accurate 

model chemistries were available, this one was chosen so that the resulting QSAR model would 

be accessible to the large number of researchers who are operating Gaussian on desktop PCs. 

Structural parameters were extracted from the Gaussian output files of each molecular species.  

These consisted of the geometric mean of the exact polarizability tensors (α , Å3), the dipole 

moment (μ, Debye) the highest occupied molecular orbital energy (HOMO, Hartree), the number 

of each type of atom, and the delta charge (Δq) – defined as the difference between the most 

negative heteroatom and the most positive hydrogen in the molecule.  The value of Δq = 0 was 

given to hydrocarbons by fiat.  The molar volume was calculated based upon a linear regression 

of the molecular formulae for the 54 chemical species.   

Mathematical transformations of each of the structural parameters (i.e. the square, the inverse, 

etc.) were included in the statistical model.  Many were guided by Barton’s chapter on molecular 

interactions [2].  For example, dipole-dipole interactions involve the square of the dipole 

moment.  Dipole-induced dipole interactions depend upon the polarizability times the square of 

the dipole moment.  Induced dipole-induced dipole interactions are proportional to the product of 

the polarizability and the first ionization potential (I1).  Our model uses the HOMO energy in lieu 
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of the first ionization potential because explicit calculation of I1 would require a time-consuming 

set of calculations on the cations of all species of interest.  The evaluation of the HOMO 

approximation of I1 was performed on the reported ionization potentials of H – Ar [11].  A linear 

relationship (I1 = 0.711(HOMO)-54.68) was found for the B3LYP/6-31G(d) single point energy 

HOMO of the atom versus the literature value of I1 of the atom with an R2 = 0.9849.   

The resulting twenty-seven structural parameters from G03 were used as inputs to a stepwise 

regression analysis.  The dependence of the literature δD, δP, and δH upon the twenty-seven input 

parameters was determined using the Minitab 15 statistical software package.  The structural 

parameters were inserted or removed based upon their p-value.  A p-value greater than 0.2 was 

needed for a parameter to be retained, and the overall correlation constant was used to drive the 

regression optimization.  Only fourteen structural parameters survived the regression analysis. 

The QSAR matrix shown in Eq. (1) is defined as those coefficients (Cuv) that transform the 

structural parameters (Su) into the activity terms δD, δP, and δH.  The zeroth structural parameter 

allows for the calculation of a constant term in the coefficient matrix (C0v). 
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The B3LYP/6-31G(d) model chemistry was used to calculate the geometry and vibrational 

frequencies of the 23 molecules shown in Fig. 1: diaminotrinitrobenzene (DATB), ethylpicrate, 

ethyltetryl, cyclotetramethylenetetranitramine (HMX), hexanitroazobenzene (HNAB), 

hexanitrostilbene (HNS), pentaerythritol tetranitrate (PETN), cyclotrimethylenetrinitramine 

(RDX), phloroglucinol, picric acid, picramide, tetranitrodibenzotetrazapentalene (TACOT), 

triaminotrinitrobenzene (TATB), triethyltrinitrobenzene (TETNB), tetryl, trinitroanisole (TNA), 

trinitrobenzene (TNB), trinitrobenzoic acid (TNBA), tetranitrocarbazole (TNC), 

trinitrochlorobenzene (TNCB), trinitrophloroglucinol (TNPG), trinitroresorcinol (TNR), and 

trinitroxylene (TNX).  These were chosen to cover a variety of species relevant to the explosive 

formulation industry.  The QSAR matrix from the 54-molecule training set was used to convert 

the Gaussian 03-derived structural parameters of these molecules into HSPs.   
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Figure 1.  The molecules studied in this work. 
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3 Results and Discussion 

The coefficients of the molar volume (Vm) regression analysis of the 183 solvents in [3] are 

shown in Eq. (2).  This relationship allows one to calculate the molar volume and the density of a 

species at 25 °C directly from the molecular formula (CaHbNcOdSePfFgClhBri).  

ihgfedcbaVm 74.2066.1870.945.1922.1712.687.496.377.853.12 +++++++++=  (2) 

The comparison of the Vm model to the 

literature values of the molar volume in [3] is 

shown in Fig. 2.  The Vm model of Eq. 2 has a 

0.9967 slope over a range of 400 cm3/mol with 

an R2 = 0.9847.  Readers who are interested in a 

broadly-applicable Vm model are encouraged to 

use Eq. 2. 

This model was applied to the 54 solvents and 

nitrated species in the QSAR training set used in 

this study.  The correlation was not as good (R2 = 

0.8447) because very few of the nitrated 

molecules in the QSAR training set were 

included in the regression that yielded Eq. 2.  Therefore, the molar volume regression was 

repeated on the QSAR training set.  The results of this regression are given in Eq. 3.  

ihedcbaVm 96.2726.2068.1948.622.791.485.684.9 +++++++=  (3) 

There are no coefficients for P or F because these atoms are not represented in the 54-

molecule QSAR training set.  This particular regression has a 0.9950 slope with an R2 = 0.9120.  

This model produced the molar volumes used in the subsequent stepwise regression. 

The fourteen structural parameters that survived the stepwise regression and the coefficient 

matrix are given in Table 1.  The overall matrix uses fourteen structural terms, but in reality the 

individual δD, δP, and δH terms required 7, 8, and 4 coefficients, respectively.  This is a 

satisfactory over-determination using 54 equations to find 7, 8, and 4 unknowns.  The correlation 

coefficients (R2) of the training set are 0.7710, 0.8924, and 0.8784 for δD, δP, and δH, respectively 

(Fig. 3).  The Van Krevelen group additivity-derived  δD and δP values did not correlate as well 
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Figure 2.  The correlation of the QSAR 
molar volume calculation to the literature 
values of 183 solvents in [3]. 
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with the literature values (R2 = 0.0343 and 0.3998, respectively).  The Van Krevelen method 

correlated better with the literature for the δH parameter with an R2 = 0.9315.  However, of the 54 

molecules in the training set, the QSAR method has a smaller Hansen distance (Ra) to the 

literature values than the Van Krevelen method for 42 of them. (Fig. 4)  Also, the Van Krevelen 

method is incapable of calculating the HSPs for any species with a sulfur such as DMSO or CS2. 

Table 2 shows the Hansen solubility parameters 

for HMX, RDX, PETN, and HNS.  The HSPs were 

determined five different ways: 1) the Hansen 

solubility sphere analysis of experimental solubility 

data, 2) the centroid of the HSPs of the solvents 

exhibiting solubility greater than the cutoff values, 

3) the Van Krevelen [5] group additivity method, 

4) the Stefanis [6] group additivity method, and 5) 

the QSAR method. The use of the centroid was 

included because the Hansen solubility spheres for 

HMX and RDX were not completely bound by 

non-solvents, and the optimization tended to walk 

the center of the interaction sphere toward 

unreasonable extremes in δP and δH. 

The Hansen distances (Ra) [4] between the two 

experimental data HSPs and the three 

computational models were calculated to evaluate the performance of the three HSP models.  The 

QSAR method was closer to the experimentally-determined HSPs for all four explosives.  The 

Stefanis method [6] did not perform well primarily due to its over-estimation of the contribution 

of nitro groups to δP (33 to 50 MPa1/2).  The results of the QSAR determination of the HSPs of 

the 23 energetic materials in this study are presented in Table 3. 

Table 1. The structural parameters and 
QSAR matrix resulting from the 
stepwise regression.  The structural 
parameters c, b, d, h, and i are defined 
by the molecular formula 
(CaHbNcOdSePfFgClhBri). 

Su CuδD CuδP CuδH 
1 8.995 -1.304 0.5078 

α 1/2 0.596 0 0 
μ 2 0.081 0 0 
c -0.6 0 0 
b -0.31 0 0 

HOMO -1 -1.09 -1.45 0 
μ -1 0.208 0 0 

(μ / Vm) 1/2 0 59.8 -7 
d 0 1.55 0 

μ -1/2 0 -10.9 0 
Δq 1/2 0 3.3 0 

i 0 4.4 0 
h 0 1.3 0 

α -1 0 0 252 
Δq 0 0 13.41 
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Figure 3.  The correlation of the QSAR results to the literature values of δD, δP, and δH for 54 
solvents and nitrated compounds in [4]. 

Table 2. The Hansen solubility parameters determined experimentally (exp), by the average 
of the solvents defined as good (centroid), by group additivity (GA), and by the QSAR 
model. 

HE Method 
Cutoff 

g/100mL 
δD 

/MPa1/2 
δP 

/MPa1/2 
δH 

/MPa1/2 
R0 / 

MPa1/2 FIT 
Ra Exp/ 
MPa1/2 

Ra Centroid/ 
MPa1/2 

HMX exp 0.10 17.7 11.6 13.7 12.1 1.00   
HMX centroid 0.10 16.7 9.2 6.6     
HMX GAa  22.5 22.9 6.9   16.4 18.0 
HMX GAb  23.5 45.2 7.3   36.1 38.5 
HMX QSAR  15.3 13.4 5.6   9.5 5.1 
RDX exp 1.40 17.3 12.4 9.1 8.4 1.00   
RDX centroid 1.40 15.9 11.0 8.8     
RDX GAa  18.5 18.8 5.7   7.7 9.9 
RDX GAb  22.0 35.8 7.5   25.3 27.7 
RDX QSAR  15.5 11.1 6.5   4.7 2.5 
PETN exp 1.50 16.7 12.0 8.4 7.8 1.00   
PETN centroid 1.50 16.3 9.7 6.9     
PETN GAa  21.4 21.2 9.5   13.1 15.5 
PETN GAb  18.8 50.4 3.0   39.0 41.2 
PETN QSAR  16.8 17.8 6.4   6.2 8.2 
HNS exp 0.15 18.9 13.9 6.1 6.0 0.98   
HNS centroid 0.15 18.0 14.0 8.7     
HNS GAa  21.0 13.3 8.6   4.9 6.0 
HNS GAb  28.0 33.0 1.9   26.7 28.4 
HNS QSAR  20.7 17.1 5.6   4.8 6.9 

a Van Krevelen method, b Stefanis method 
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4 Conclusions 

A QSAR model was trained against 54 

molecules and was used to predict the HSPs of 

23 energetic materials (Table 3). 

The Hansen solubility parameters were 

determined for HMX, RDX, PETN, and HNS 

using solubility data.  The QSAR method 

matched these experimental results more 

closely than the currently-popular group 

additivity methods.   

The strengths of the QSAR method:  

1. The computational chemistry approach is 

as universal as the basis set of the model 

chemistry, and the 6-31G(d) basis set 

covers the elements H through Kr.  See [7] 

for a description of other basis sets. 

2. The QSAR approach produces the HSPs in 

a less ambiguous manner than the group 

additivity methods since the QSAR 

approach avoids priority ranking of chemical groups or secondary structure categories. 

3. The computational modeling, QSAR training, and subsequent transformation is amenable to a 

standard procedure approach.  Once the user becomes familiar with the simple steps needed 

to calculate a geometry optimization and frequency calculation, the HSP determination via 

QSAR is a simple matrix transformation of output file parameters. 

4. The QSAR method is easily adapted to target a particular class of compounds by training it 

against that class of compounds.  The only drawback to this targeted approach is the desire to 

create a large training set to improve the accuracy of the model.  If there is limited HSP data 

for a particular class of compounds, then the training set and the accuracy will be limited. 

Table 3.  The QSAR-determined HSPs for 
energetic materials of interest to the 
explosive formulation community. 

Abbreviated Name 
δD 

/MPa1/2 
δP 

/MPa1/2 
δH 

/MPa1/2 
DATB 18.8 13.6 19.6 
ethylpicrate 18.7 11.9 7.8 
ethyltetryl 18.9 15.8 5.3 
HMX 15.3 16.0 5.3 
HNAB 23.0 22.0 6.5 
HNS 20.7 17.2 5.6 
PETN 16.8 18.0 6.4 
phloroglucinol 19.7 11.3 15.6 
picramide 19.2 14.7 19.3 
picric acid 18.9 12.8 15.3 
RDX 15.5 13.2 6.3 
TACOT 20.3 14.6 3.3 
TATB 18.5 13.5 21.1 
TETNB 17.8 13.0 8.1 
tetryl 18.5 14.2 5.5 
TNA 18.8 12.1 7.6 
TNB 19.1 10.8 6.7 
TNBA 19.0 13.1 13.7 
TNC 20.9 14.9 21.0 
TNCB 19.5 11.5 6.5 
TNPG 19.9 17.1 15.4 
TNR 19.3 14.3 15.9 
TNX 18.1 8.9 5.6 
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Figure 4.  The Hansen distance (Ra) from the computational method to the literature values 
for the 54-molecule training set. 
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