Corrections to 2009 ICT Paper

A QSAR MODEL FOR PREDICTING SOLVENTS AND SOLVENT BLENDS FOR ENERGETIC MATERIALS, Darren L. Williams, Karl D. Kuklenz, Chemistry Department,

Sam Houston State University, 1003 Bowers Blvd, Huntsville, TX 77341-2117, Email: williams@shsu.edu

Table 1 from the paper is given below, and it contains four errors. The corrections are given in the first column and labeled "Corrected S_u ".

Table 1. The structural parameters and QSAR matrix resulting from the stepwise regression. The structural parameters c, b, d, h, and i are defined by the molecular formula $(C_aH_bN_cO_dS_eP_fF_gCl_hBr_i)$.

Corrected S _i	ı Su	$C_u \delta_D$	$C_u \delta_P$	$C_u \delta_H$
1	1	8.995	-1.304	0.5078
$lpha^{1/2}$	$lpha$ $^{1/2}$	0.596	0	0
μ^2	μ^2	0.081	0	0
С	С	-0.6	0	0
b	b	-0.31	0	0
HOMO $^{-1}$	$HOMO^{-1}$	-1.09	-1.45	0
μ^{-1}	μ^{-1}	0.208	0	0
$\mu/(V_m^{1/2})$	$(\mu / V_m)^{1/2}$	0	59.8	-7
d	d	0	1.55	0
$\mu^{1/2}$	$\mu^{-1/2}$	0	-10.9	0
Δq	$\Delta q^{1/2}$	0	3.3	0
i	i	0	4.4	0
h	h	0	1.3	0
α^{-1}	lpha -1	0	0	252
Δq^2	Δq	0	0	13.41

The four changes were:

- 1. From $(\mu / V_m)^{1/2}$ to $\mu / (V_m^{1/2})$
- 2. From $\mu^{-1/2}$ to $\mu^{1/2}$
- 3. From $\Delta q^{1/2}$ to Δq
- 4. From Δq to Δq^2

We apologize for any inconvenience these mistakes may have caused.

Sincerely,

Darren L. Williams, Ph.D. Associate Professor of Chemistry at Sam Houston State University